cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A370493 Numbers k such that A006530(k) = A051903(k).

Original entry on oeis.org

4, 24, 27, 54, 72, 108, 160, 216, 480, 800, 896, 1215, 1440, 2400, 2430, 2688, 3125, 4000, 4320, 4480, 4860, 6075, 6250, 6272, 7200, 8064, 9375, 9720, 12000, 12150, 12500, 12960, 13440, 15309, 18750, 18816, 19440, 20000, 21600, 22400, 22528, 24192, 24300, 25000
Offset: 1

Views

Author

Amiram Eldar, Feb 20 2024

Keywords

Examples

			72 = 2^3 * 3^2 is a term since A006530(72) = A051903(72) = 3.
		

Crossrefs

Programs

  • Mathematica
    q[n_] := Module[{f = FactorInteger[n]}, Max[f[[;; , 2]]] == f[[-1, 1]]]; Select[Range[2, 25000], q]
  • PARI
    is(n)={my(f = factor(n), p = f[,1], e = f[,2]); n > 1 && p[#p] == vecmax(e);}

Formula

Sum_{n>=1} 1/a(n) = Sum_{k>=1} ((Sum_{i=1..prime(k)-1} 1/p^i) * (s(p(k-1)^prime(k)) - s(p(k-1)^(prime(k)-1))) + s(p(k-1)^prime(k))/prime(k)^prime(k)) = 0.39239336056178266729..., where s(k) = sigma_{-1}(k) = A017665(k)/A017666(k), and p(k) = prime(k)# = A002110(k).