cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A370495 Oblong numbers of the form (k-1)*k where k is the product of an even number of distinct primes.

Original entry on oeis.org

0, 30, 90, 182, 210, 420, 462, 650, 1056, 1122, 1190, 1406, 1482, 2070, 2550, 2970, 3192, 3306, 3782, 4160, 4692, 5402, 5852, 6642, 7140, 7310, 7482, 8190, 8556, 8742, 8930, 11130, 12210, 13110, 13806, 14042, 14762, 15006, 16512, 17556, 17822, 19740, 20022, 20306
Offset: 1

Views

Author

Amiram Eldar, Feb 20 2024

Keywords

Crossrefs

Complement of A370494 within A368249.

Programs

  • Mathematica
    Table[n*(n - 1), {n, Select[Range[150], MoebiusMu[#] == 1 &]}]
  • PARI
    lista(kmax) = forsquarefree(k=1, kmax, if(moebius(k) == 1, print1(k[1]*(k[1]-1), ", ")));
    
  • Python
    from math import isqrt, prod
    from sympy import primerange, integer_nthroot, primepi
    def A370495(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b+1,isqrt(x//c)+1),a+1)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b+1,integer_nthroot(x//c,m)[0]+1),a+1) for d in g(x,a2,b2,c*b2,m-1)))
        def f(x): return int(n-1+x-sum(sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,0,1,1,i)) for i in range(2,x.bit_length(),2)))
        return (k:=bisection(f,n,n))*(k-1) # Chai Wah Wu, Jan 28 2025

Formula

a(n) = A002378(A030229(n)-1).
Sum_{n>=2} 1/a(n) = (A368250 - A033150 + 1)/2 = 0.071711363929... .
Showing 1-1 of 1 results.