cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A370498 Number of paths from (0, 0) to (2n, 2n) in an n X n grid using only steps north, northeast and east (i.e., steps (1, 0), (1, 1), and (0, 1)) and that do not pass through diagonal points with odd coordinates.

This page as a plain text file.
%I A370498 #21 Mar 25 2024 09:11:25
%S A370498 1,4,60,1204,27724,691812,18198492,496924692,13951437804,400212569284,
%T A370498 11679079547260,345621250279284,10347645099250060,312857431914558244,
%U A370498 9538937406065229084,292961855077076241108,9054857076142602126636,281439018537947499788676,8791174819979940884130492
%N A370498 Number of paths from (0, 0) to (2n, 2n) in an n X n grid using only steps north, northeast and east (i.e., steps (1, 0), (1, 1), and (0, 1)) and that do not pass through diagonal points with odd coordinates.
%F A370498 a(n) = b(2*n,2*n) where b(n,0) = b(0,m) = 1, b(2n+1,2n+1) = 0 and b(n,m) = b(n-1,m-1) + b(n-1,m) + b(n,m-1) otherwise.
%F A370498 a(n) = ceiling((2/3)*A138462(n)).
%F A370498 a(n) ~ (1 + sqrt(2))^(4*n+1) / (3 * 2^(5/4) * sqrt(Pi) * n^(3/2)). - _Vaclav Kotesovec_, Mar 14 2024
%F A370498 D-finite with recurrence +n*(2*n+1)*a(n) +(-70*n^2+73*n-15)*a(n-1) +(70*n^2-277*n+270)*a(n-2) -(2*n-5)*(n-3)*a(n-3)=0. - _R. J. Mathar_, Mar 25 2024
%p A370498 a:= proc(n) option remember; `if`(n<2, 4^n, ((8*n-6)*(34*n^2-51*n+11)
%p A370498       *a(n-1)-(n-2)*(4*n-1)*(2*n-3)*a(n-2))/(n*(4*n-5)*(2*n+1)))
%p A370498     end:
%p A370498 seq(a(n), n=0..18);  # _Alois P. Heinz_, Feb 20 2024
%t A370498 A[n_, m_] :=  A[n, m] = Which[m*n == 0, 1, m == n && Mod[m, 2] == 1, 0, True, A[n - 1, m] + A[n, m - 1] + A[n - 1, m - 1]]; Table[A[2 n, 2 n], {n, 0, 45}]
%Y A370498 Cf. A001850, A008288, A138462.
%K A370498 nonn
%O A370498 0,2
%A A370498 _José María Grau Ribas_, Feb 20 2024