This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A370498 #21 Mar 25 2024 09:11:25 %S A370498 1,4,60,1204,27724,691812,18198492,496924692,13951437804,400212569284, %T A370498 11679079547260,345621250279284,10347645099250060,312857431914558244, %U A370498 9538937406065229084,292961855077076241108,9054857076142602126636,281439018537947499788676,8791174819979940884130492 %N A370498 Number of paths from (0, 0) to (2n, 2n) in an n X n grid using only steps north, northeast and east (i.e., steps (1, 0), (1, 1), and (0, 1)) and that do not pass through diagonal points with odd coordinates. %F A370498 a(n) = b(2*n,2*n) where b(n,0) = b(0,m) = 1, b(2n+1,2n+1) = 0 and b(n,m) = b(n-1,m-1) + b(n-1,m) + b(n,m-1) otherwise. %F A370498 a(n) = ceiling((2/3)*A138462(n)). %F A370498 a(n) ~ (1 + sqrt(2))^(4*n+1) / (3 * 2^(5/4) * sqrt(Pi) * n^(3/2)). - _Vaclav Kotesovec_, Mar 14 2024 %F A370498 D-finite with recurrence +n*(2*n+1)*a(n) +(-70*n^2+73*n-15)*a(n-1) +(70*n^2-277*n+270)*a(n-2) -(2*n-5)*(n-3)*a(n-3)=0. - _R. J. Mathar_, Mar 25 2024 %p A370498 a:= proc(n) option remember; `if`(n<2, 4^n, ((8*n-6)*(34*n^2-51*n+11) %p A370498 *a(n-1)-(n-2)*(4*n-1)*(2*n-3)*a(n-2))/(n*(4*n-5)*(2*n+1))) %p A370498 end: %p A370498 seq(a(n), n=0..18); # _Alois P. Heinz_, Feb 20 2024 %t A370498 A[n_, m_] := A[n, m] = Which[m*n == 0, 1, m == n && Mod[m, 2] == 1, 0, True, A[n - 1, m] + A[n, m - 1] + A[n - 1, m - 1]]; Table[A[2 n, 2 n], {n, 0, 45}] %Y A370498 Cf. A001850, A008288, A138462. %K A370498 nonn %O A370498 0,2 %A A370498 _José María Grau Ribas_, Feb 20 2024