This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
for all i in [n-k]; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
%I A370505 #36 Feb 27 2024 15:39:44 %S A370505 1,0,1,0,1,1,0,1,2,3,0,1,5,6,12,0,1,9,20,30,60,0,1,19,70,90,180,360,0, %T A370505 1,34,175,420,630,1260,2520,0,1,69,490,1960,2520,5040,10080,20160,0,1, %U A370505 125,1554,5880,15120,22680,45360,90720,181440,0,1,251,3948,21000,88200,113400,226800,453600,907200,1814400 %N A370505 T(n,k) is the difference between the number of k-dist-increasing and (k-1)-dist-increasing permutations of [n], where p is k-dist-increasing if k>=0 and p(i)<p(i+k) for all i in [n-k]; triangle T(n,k), n>=0, 0<=k<=n, read by rows. %H A370505 Alois P. Heinz, <a href="/A370505/b370505.txt">Rows n = 0..150, flattened</a> %H A370505 Wikipedia, <a href="https://en.wikipedia.org/wiki/K-sorted_sequence">K-sorted sequence</a> %H A370505 Wikipedia, <a href="https://en.wikipedia.org/wiki/Permutation">Permutation</a> %F A370505 T(n,k) = A248686(n,k) - A248686(n,k-1) for k>=2. %F A370505 Sum_{k=0..n} (1+n-k) * T(n,k) = A248687(n) for n>=1. %e A370505 T(0,0) = 1: (only) the empty permutation is 0-dist-increasing. %e A370505 T(4,2) = 5 = 6 - 1 = |{1234, 1243, 1324, 2134, 2143, 3142}| - |{1234}|. %e A370505 Permutation 3142 is 2-dist-increasing and 4-dist-increasing but not 3-dist-increasing. %e A370505 Triangle T(n,k) begins: %e A370505 1; %e A370505 0, 1; %e A370505 0, 1, 1; %e A370505 0, 1, 2, 3; %e A370505 0, 1, 5, 6, 12; %e A370505 0, 1, 9, 20, 30, 60; %e A370505 0, 1, 19, 70, 90, 180, 360; %e A370505 0, 1, 34, 175, 420, 630, 1260, 2520; %e A370505 0, 1, 69, 490, 1960, 2520, 5040, 10080, 20160; %e A370505 0, 1, 125, 1554, 5880, 15120, 22680, 45360, 90720, 181440; %e A370505 ... %p A370505 b:= proc(n, k) option remember; `if`(k<1, %p A370505 `if`(n=k, 1, 0), n!/mul(iquo(n+i, k)!, i=0..k-1)) %p A370505 end: %p A370505 T:= (n, k)-> b(n, k)-b(n, k-1): %p A370505 seq(seq(T(n, k), k=0..n), n=0..10); %Y A370505 Columns k=0-2 give: A000007, A057427, A014495. %Y A370505 Row sums give A000142. %Y A370505 Main diagonal gives A001710. %Y A370505 T(2n,n+1) gives A000680 for n>=1. %Y A370505 T(2n,n) gives A370576. %Y A370505 Cf. A248686, A248687, A370506, A370507. %K A370505 nonn,tabl %O A370505 0,9 %A A370505 _Alois P. Heinz_, Feb 20 2024