This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
for all i in [n-j]; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
%I A370506 #33 Feb 24 2024 09:45:02 %S A370506 1,0,1,0,1,1,0,3,2,1,0,11,8,4,1,0,55,38,19,7,1,0,319,228,110,50,12,1, %T A370506 0,2233,1574,775,322,115,20,1,0,17641,12524,6216,2611,1033,261,33,1,0, %U A370506 158769,112084,55692,23585,9103,3006,586,54,1,0,1578667,1119496,556754,238425,91764,33929,8372,1304,88,1 %N A370506 T(n,k) is the number permutations p of [n] that are j-dist-increasing for exactly k distinct values j in [n], where p is j-dist-increasing if j>=0 and p(i)<p(i+j) for all i in [n-j]; triangle T(n,k), n>=0, 0<=k<=n, read by rows. %H A370506 Wikipedia, <a href="https://en.wikipedia.org/wiki/K-sorted_sequence">K-sorted sequence</a> %H A370506 Wikipedia, <a href="https://en.wikipedia.org/wiki/Permutation">Permutation</a> %F A370506 Sum_{k=0..n} k * T(n,k) = A248687(n) for n>=1. %e A370506 T(4,1) = 11: 2341, 2431, 3241, 3412, 3421, 4123, 4132, 4213, 4231, 4312, 4321. %e A370506 T(4,2) = 8: 1342, 1423, 1432, 2314, 2413, 3124, 3142, 3214. %e A370506 T(4,3) = 4: 1243, 1324, 2134, 2143. %e A370506 T(4,4) = 1: 1234. %e A370506 Triangle T(n,k) begins: %e A370506 1; %e A370506 0, 1; %e A370506 0, 1, 1; %e A370506 0, 3, 2, 1; %e A370506 0, 11, 8, 4, 1; %e A370506 0, 55, 38, 19, 7, 1; %e A370506 0, 319, 228, 110, 50, 12, 1; %e A370506 0, 2233, 1574, 775, 322, 115, 20, 1; %e A370506 0, 17641, 12524, 6216, 2611, 1033, 261, 33, 1; %e A370506 0, 158769, 112084, 55692, 23585, 9103, 3006, 586, 54, 1; %e A370506 ... %p A370506 q:= proc(l, k) local i; for i from 1 to nops(l)-k do %p A370506 if l[i]>=l[i+k] then return 0 fi od; 1 %p A370506 end: %p A370506 b:= proc(n) option remember; add(x^add( %p A370506 q(l, j), j=1..n), l=combinat[permute](n)) %p A370506 end: %p A370506 T:= (n, k)-> coeff(b(n), x, k): %p A370506 seq(seq(T(n,k), k=0..n), n=0..8); %t A370506 q[l_, k_] := Module[{i}, For[i = 1, i <= Length[l]-k, i++, %t A370506 If[l[[i]] >= l[[i+k]], Return@0]]; 1]; %t A370506 b[n_] := b[n] = Sum[x^Sum[q[l, j], {j, 1, n}], {l, Permutations[Range[n]]}]; %t A370506 T[n_, k_] := Coefficient[b[n], x, k]; %t A370506 Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Feb 24 2024, after _Alois P. Heinz_ *) %Y A370506 Column k=0 gives A000007. %Y A370506 Column k=1 gives A370514 or A370507(n,n) for n>=1. %Y A370506 Row sums give A000142. %Y A370506 T(n,n-1) gives A000071(n+1). %Y A370506 Cf. A248687, A370505. %K A370506 nonn,tabl %O A370506 0,8 %A A370506 _Alois P. Heinz_, Feb 20 2024