This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
for all i in [n-j]; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
%I A370507 #28 Feb 29 2024 10:20:32 %S A370507 1,0,1,0,1,1,0,1,2,3,0,1,5,7,11,0,1,9,22,33,55,0,1,19,77,112,192,319, %T A370507 0,1,34,189,480,788,1315,2233,0,1,69,526,2187,3500,5987,10409,17641,0, %U A370507 1,125,1625,6811,18273,30568,53791,92917,158769,0,1,251,4111,23507,101424,167480,299769,528253,925337,1578667 %N A370507 T(n,k) is the number permutations p of [n] that are k-dist-increasing but not j-dist-increasing for any j<k, where p is j-dist-increasing if j>=0 and p(i)<p(i+j) for all i in [n-j]; triangle T(n,k), n>=0, 0<=k<=n, read by rows. %H A370507 Wikipedia, <a href="https://en.wikipedia.org/wiki/K-sorted_sequence">K-sorted sequence</a> %H A370507 Wikipedia, <a href="https://en.wikipedia.org/wiki/Permutation">Permutation</a> %e A370507 T(4,1) = 1: 1234. %e A370507 T(4,2) = 5: 1243, 1324, 2134, 2143, 3142. %e A370507 T(4,3) = 7: 1342, 1423, 1432, 2314, 2413, 3124, 3214. %e A370507 T(4,4) = 11: 2341, 2431, 3241, 3412, 3421, 4123, 4132, 4213, 4231, 4312, 4321. %e A370507 Triangle T(n,k) begins: %e A370507 1; %e A370507 0, 1; %e A370507 0, 1, 1; %e A370507 0, 1, 2, 3; %e A370507 0, 1, 5, 7, 11; %e A370507 0, 1, 9, 22, 33, 55; %e A370507 0, 1, 19, 77, 112, 192, 319; %e A370507 0, 1, 34, 189, 480, 788, 1315, 2233; %e A370507 0, 1, 69, 526, 2187, 3500, 5987, 10409, 17641; %e A370507 0, 1, 125, 1625, 6811, 18273, 30568, 53791, 92917, 158769; %e A370507 ... %p A370507 q:= proc(l, k) local i; for i from 1 to nops(l)-k do %p A370507 if l[i]>=l[i+k] then return 0 fi od; 1 %p A370507 end: %p A370507 m:= proc(l) local k; %p A370507 for k from 0 to nops(l) do if q(l, k)>0 then return k fi od %p A370507 end: %p A370507 b:= proc(n) b(n):= add(x^m(l), l=combinat[permute](n)) end: %p A370507 T:= (n, k)-> coeff(b(n), x, k): %p A370507 seq(seq(T(n, k), k=0..n), n=0..8); %t A370507 q[l_, k_] := Module[{i}, For[i = 1, i <= Length[l] - k, i++, If[l[[i]] >= l[[i + k]], Return [0]]]; 1]; %t A370507 m[l_] := Module[{k}, For[k = 0, k <= Length[l], k++, If[q[l, k] > 0, Return[k]]]]; %t A370507 b[n_] := Sum[x^m[l], {l, Permutations[Range@n]}]; %t A370507 T[n_, k_] := Coefficient[b[n], x, k]; %t A370507 Table[Table[T[n, k], {k, 0, n}], {n, 0, 8}] // Flatten (* _Jean-François Alcover_, Feb 29 2024, after _Alois P. Heinz_ *) %Y A370507 Columns k=0-2 give: A000007, A057427, A014495. %Y A370507 Main diagonal gives A370514, also A370506(n,1) for n>=1. %Y A370507 Row sums give A000142. %Y A370507 Cf. A370505. %K A370507 nonn,tabl %O A370507 0,9 %A A370507 _Alois P. Heinz_, Feb 20 2024