A370516 Triangle of numbers read by rows: T(n,k) = Sum_{i=0..n-k} binomial(n+1,n-k-i)*Stirling2(i+3,i+1)*(-1)^i for n >= 0, 0 <= k <= n.
1, -5, 1, 7, -4, 1, -3, 3, -3, 1, 0, 0, 0, -2, 1, 0, 0, 0, -2, -1, 1, 0, 0, 0, -2, -3, 0, 1, 0, 0, 0, -2, -5, -3, 1, 1, 0, 0, 0, -2, -7, -8, -2, 2, 1, 0, 0, 0, -2, -9, -15, -10, 0, 3, 1, 0, 0, 0, -2, -11, -24, -25, -10, 3, 4
Offset: 0
Examples
n\k 0 1 2 3 4 5 6 0: 1 1: -5 1 2: 7 -4 1 3: -3 3 -3 1 4: 0 0 0 -2 1 5: 0 0 0 -2 -1 1 6: 0 0 0 -2 -3 0 1
Links
- Igor Victorovich Statsenko, On the ordinal numbers of triangles of generalized special numbers, Innovation science No 2-2, State Ufa, Aeterna Publishing House, 2024, pp. 15-19. In Russian.
Crossrefs
Programs
-
Maple
C:=(n,k)->n!/(k!*(n-k)!) : T:=(m,n,k)->sum(C(n+1,n-k-r)*Stirling2(r+m+1,r+1)*((-1)^r), r=0..n-k) : m:=2 : seq(seq T(m,n,k), k=0..n), n=0..10);
Formula
T(n,k) = Sum_{i=0..n-k} binomial(n+1,n-k-i)*Stirling2(i+m+1,i+1)*(-1)^i where m = 2 for n >= 0, 0 <= k <= n.
Comments