This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A370539 #14 Mar 14 2024 15:21:22 %S A370539 1,2,8,30,118,462,1824,7208,28558,113274,449848,1787968,7111716, %T A370539 28303548,112700032,448939744,1788990454,7131191202,28433681832, %U A370539 113398298336,452345641820,1804739556100,7201621713568,28741559322464,114722405784428,457971605148996,1828422022584176 %N A370539 Expansion of g.f. (1 - x*C(x)) * (1 - x*C(x^2)) / (1 - 4*x), where C(x) = 1 + x*C(x)^2 is the Catalan function (A000108). %F A370539 G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies the following formulas. %F A370539 (1) A(x) = (1 - x*C(x)) * (1 - x*C(x^2)) / (1 - 4*x), where C(x) = 1 + x*C(x)^2 is the Catalan function (A000108). %F A370539 (2) A(x) = (1 + sqrt(1 - 4*x)) * (2-3*x + x*sqrt(1 - 4*x^2)) / (4*(1-4*x)). %F A370539 a(n) ~ (10 + sqrt(3)) * 2^(2*n - 5). - _Vaclav Kotesovec_, Mar 14 2024 %e A370539 G.f.: A(x) = 1 + 2*x + 8*x^2 + 30*x^3 + 118*x^4 + 462*x^5 + 1824*x^6 + 7208*x^7 + 28558*x^8 + 113274*x^9 + 449848*x^10 + ... %e A370539 RELATED SERIES. %e A370539 The Catalan function C(x) = (1 - sqrt(1-4*x))/(2*x) begins %e A370539 C(x) = 1 + x + 2*x^2 + 5*x^3 + 14*x^4 + 42*x^5 + 132*x^6 + 429*x^7 + 1430*x^8 + 4862*x^9 + ... + A000108(n)*x^n + ... %o A370539 (PARI) {a(n) = my(x = 'x + O('x^(n+3)), C(x) = (1 - sqrt(1 - 4*x))/(2*x), A = (1 - x*C(x)) * (1 - x*C(x^2)) / (1 - 4*x) ); %o A370539 polcoeff(A,n);} %o A370539 for(n=0,30, print1(a(n),", ")) %o A370539 (PARI) {a(n) = my(x = 'x + O('x^(n+3)), A = (1 + sqrt(1 - 4*x)) * sqrt( (1 - 2*x)*(1 - sqrt(1 - 4*x^2))/2 ) / (2*x*(1-4*x)) ); %o A370539 polcoeff(A,n);} %o A370539 for(n=0,30, print1(a(n),", ")) %Y A370539 Cf. A000108, A370540. %K A370539 nonn %O A370539 0,2 %A A370539 _Paul D. Hanna_, Mar 12 2024