This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A370546 #8 Mar 27 2024 21:25:08 %S A370546 1,5,25,125,625,3130,15800,81625,443125,2609375,16984500,121023875, %T A370546 914745625,7093331250,55129765625,424092582500,3212747690625, %U A370546 23952422065625,176059004593750,1279867522656250,9237023201350000,66454031585359375,478427499949687500,3458191615224687500 %N A370546 Expansion of g.f. satisfying A(x) = A( x*A(x)^4 + 5*x*A(x)^5 )^(1/5). %H A370546 Paul D. Hanna, <a href="/A370546/b370546.txt">Table of n, a(n) for n = 1..400</a> %F A370546 G.f. A(x) = Sum_{n>=1} a(n)*x^n satisfies the following formulas. %F A370546 (1.a) A(x)^5 = A( x*A(x)^4 * (1 + 5*A(x)) ). %F A370546 (1.b) A(x)^25 = A( x*A(x)^24 * (1 + 5*A(x))*(1 + 5*A(x)^5) ). %F A370546 (1.c) A(x)^125 = A( x*A(x)^124 * (1 + 5*A(x))*(1 + 5*A(x)^5)*(1 + 5*A(x)^25) ). %F A370546 (1.d) A(x)^(5^n) = A( x*A(x)^(5^n-1) * Product_{k=0..n-1} (1 + 5*A(x)^(5^k)) ). %F A370546 (2) A(x) = x * Product_{n>=0} (1 + 5*A(x)^(5^n)). %F A370546 (3) A(x) = Series_Reversion( x / Product_{n>=0} (1 + 5*x^(5^n)) ). %e A370546 G.f.: A(x) = x + 5*x^2 + 25*x^3 + 125*x^4 + 625*x^5 + 3130*x^6 + 15800*x^7 + 81625*x^8 + 443125*x^9 + 2609375*x^10 + 16984500*x^11 + 121023875*x^12 + ... %e A370546 where A(x)^5 = A( x*A(x)^4 + 5*x*A(x)^5 ). %o A370546 (PARI) {a(n) = my(A=[0,1]); for(i=1,n, A=concat(A,0); %o A370546 F=Ser(A); A[#A] = polcoeff(subst(F,x,x*F^4 + 5*x*F^5) - F^5,#A+3) );A[n+1]} %o A370546 for(n=1,30, print1(a(n),", ")) %Y A370546 Cf. A356782, A370439, A370545. %K A370546 nonn %O A370546 1,2 %A A370546 _Paul D. Hanna_, Mar 27 2024