This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A370547 #17 Feb 22 2024 17:46:22 %S A370547 1,-1,-5,-5,19,73,-331,-2795,18265,58643,-141349,-4197973,1035215, %T A370547 61269445,-9158903,-1495930487,-34376687,26949145375,33594289475, %U A370547 -1013112936505,-4905856636525,459074207581145,1713253866399725,-6497000065206625,-51270656805872335,239235470859971731 %N A370547 a(n) is the numerator of the real part of Product_{k=1..n} (1/k + i) where i is the imaginary unit. %F A370547 a(n) = numerator of A105750(n)/n!. - _Chai Wah Wu_, Feb 22 2024 %e A370547 n a(n) %e A370547 A370547(n) A370549(n) %e A370547 / A370548(n) / A370550(n) %e A370547 1 1/1 +1/1 *i %e A370547 2 -1/2 +3/2 *i %e A370547 3 -5/3 +0/1 *i %e A370547 4 -5/12 -5/3 *i %e A370547 5 19/12 -3/4 *i %e A370547 6 73/72 +35/24 *i %e A370547 7 -331/252 +11/9 *i %e A370547 8 -2795/2016 -65/56 *i %e A370547 9 18265/18144 -3055/2016 *i %e A370547 10 58643/36288 +4433/5184 *i %o A370547 (PARI) a370547(n) = numerator(real(prod(k=1,n,1/k+I))) %o A370547 (Python) %o A370547 from math import factorial, gcd %o A370547 from sympy.functions.combinatorial.numbers import stirling %o A370547 def A370547(n): return (a:=sum(stirling(n+1,n+1-(k<<1),kind=1)*(-1 if k&1 else 1) for k in range((n+1>>1)+1)))//gcd(a,factorial(n)) # _Chai Wah Wu_, Feb 22 2024 %Y A370547 Cf. A105750, A370548, A370549, A370550. %K A370547 frac,sign,easy %O A370547 1,3 %A A370547 _Hugo Pfoertner_, Feb 22 2024