This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A370551 #11 Feb 22 2024 17:46:30 %S A370551 1,1,0,-5,-3,-73,-11,-2795,-3055,-58643,-2561,-4197973,-614635, %T A370551 -61269445,-3871801,-1495930487,-23794993,-26949145375,-1677354925, %U A370551 -1013112936505,-30432904645,-459074207581145,-2099373575975,-6497000065206625,-11053607615333933,-239235470859971731 %N A370551 a(n) is the numerator of the real part of Product_{k=1..n} (1 + i/k) where i is the imaginary unit. %F A370551 a(n) = numerator of A231530(n)/n!. - _Chai Wah Wu_, Feb 22 2024 %e A370551 n A370551(n) A370553(n) %e A370551 / A370552(n) / A370554(n) %e A370551 1 1/1 +1/1 *i %e A370551 2 1/2 +3/2 *i %e A370551 3 0/1 +5/3 *i %e A370551 4 -5/12 +5/3 *i %e A370551 5 -3/4 +19/12 *i %e A370551 6 -73/72 +35/24 *i %e A370551 7 -11/9 +331/252 *i %e A370551 8 -2795/2016 +65/56 *i %e A370551 9 -3055/2016 +18265/18144 *i %e A370551 10 -58643/36288 +4433/5184 *i %o A370551 (PARI) a370551(n) = numerator(real(prod(k=1, n, 1+I/k))) %o A370551 (Python) %o A370551 from math import factorial, gcd %o A370551 from sympy.functions.combinatorial.numbers import stirling %o A370551 def A370551(n): return (a:=sum(stirling(n+1,(k<<1)+1,kind=1)*(-1 if k&1 else 1) for k in range((n>>1)+1)))//gcd(a,factorial(n)) # _Chai Wah Wu_, Feb 22 2024 %Y A370551 Cf. A231530, A370552, A370553, A370554. %K A370551 sign,frac,easy %O A370551 1,4 %A A370551 _Hugo Pfoertner_, Feb 22 2024