A370567 Size of the group Q_7*/(Q_7*)^n, where Q_7 is the field of 7-adic numbers.
1, 4, 9, 8, 5, 36, 49, 16, 27, 20, 11, 72, 13, 196, 45, 32, 17, 108, 19, 40, 441, 44, 23, 144, 25, 52, 81, 392, 29, 180, 31, 64, 99, 68, 245, 216, 37, 76, 117, 80, 41, 1764, 43, 88, 135, 92, 47, 288, 2401, 100, 153, 104, 53, 324, 55, 784, 171, 116, 59, 360, 61, 124, 1323, 128
Offset: 1
Links
- Jianing Song, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
a[n_] := Module[{e2 = IntegerExponent[n, 2], e3 = IntegerExponent[n, 3], e7 = IntegerExponent[n, 7]}, 2^Min[e2, 1] * 3^Min[e3, 1] * 7^e7 * n]; Array[a, 100] (* Amiram Eldar, May 20 2024 *)
-
PARI
a(n, {p=7}) = my(e = valuation(n, p)); n * p^e*gcd(p-1, n/p^e)
Formula
Write n = 7^e * n' with k' not being divisible by 7, then a(n) = n * 7^e * gcd(6,n').
Multiplicative with a(7^e) = 7^(2*e), a(2^e) = 2^(e+1), a(3^e) = 3^(e+1) and a(p^e) = p^e for primes p != 2, 3, 7.
a(n) = n * A370182(n).
From Amiram Eldar, May 20 2024: (Start)
Dirichlet g.f.: ((1 + 1/2^(s-1)) * (1 + 2/3^(s-1)) * (1 - 1/7^(s-1))/(1 - 1/7^(s-2))) * zeta(s-1).
Sum_{k=1..n} a(k) ~ (15*n^2/(14*log(7))) * (log(n) + gamma - 1/2 + 2*log(7)/3 - 2*log(3)/5 - log(2)/3), where gamma is Euler's constant (A001620). (End)
Comments