This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A370574 #22 Mar 03 2024 13:42:02 %S A370574 -1,-1,4,3,3,8,24,6,23,6,44,16,43,48,36,12,111,46,180,12,72,88,9,7,7, %T A370574 86,20,59,20,72,56,24,479,222,20,15,20,360,15,24,183,144,13,11,11,18, %U A370574 943,14,1103,14,747,172,405,40,159,31,492,40,28,144,28,112,31,48,660 %N A370574 a(n) is the least k > 0 such that n^2 XOR k^2 is a positive square number (where XOR denotes the bitwise XOR operator), or -1 if no such k exists. %C A370574 This sequence has similarities with A055527; here we look for triples (n, k, m) of positive integers such that n^2 XOR k^2 = m^2, there for triples such that n^2 + k^2 = m^2. %C A370574 Conjecture: a(n) > 0 for any n > 2. %H A370574 Karl-Heinz Hofmann, <a href="/A370574/b370574.txt">Table of n, a(n) for n = 1..10000</a> %H A370574 <a href="https://practical-ardinghelli-959d8f.netlify.app/a370574">Interactive scatterplot of (x, y, z) such that x^2 XOR y^2 = z^2 and x, y, z < 2^13</a> [provided your web browser supports the Plotly library, you should see icons on the top right corner of the page: if you choose "Orbital rotation", then you will be able to rotate the plot alongside three axes] %H A370574 Rémy Sigrist, <a href="/A370574/a370574.png">Logarithmic scatterplot of the first 140000 terms</a> %e A370574 For n = 6: we have: %e A370574 k 6^2 XOR k^2 Positive square? %e A370574 -- ----------- ---------------- %e A370574 1 37 No %e A370574 2 32 No %e A370574 3 45 No %e A370574 4 52 No %e A370574 5 61 No %e A370574 6 0 No %e A370574 7 21 No %e A370574 8 100 Yes %e A370574 So a(6) = 8. %p A370574 f:= proc(n) local k; %p A370574 for k from 1 by 1 do if k <> n and issqr(MmaTranslator[Mma]:-BitXor(n^2, k^2)) then return k fi od %p A370574 end proc: f(1):= -1: f(2):= -1: %p A370574 map(f, [$1..100]); # _Robert Israel_, Mar 01 2024 %t A370574 A370574[n_] := If[n <= 2, -1, Block[{k = 0}, While[++k == n || !IntegerQ[ Sqrt[BitXor[n^2, k^2]]]]; k]]; Array[A370574, 100] (* _Paolo Xausa_, Mar 01 2024 *) %o A370574 (PARI) a(n) = { if (n <= 2, return (-1), for (k = 1, oo, if (k!=n && issquare( bitxor(n^2, k^2)), return (k)););); } %o A370574 (Python) %o A370574 from sympy import integer_nthroot %o A370574 def A370574(n): %o A370574 if n <= 2: return -1 %o A370574 k, n_2 = 1, n**2 %o A370574 while True: %o A370574 if (integer_nthroot(n_2 ^ k**2, 2))[1] and k != n: return k %o A370574 k += 1 # _Karl-Heinz Hofmann_, Mar 03 2024 %Y A370574 Cf. A055527. %K A370574 sign,base %O A370574 1,3 %A A370574 _Rémy Sigrist_, Feb 22 2024