A370577 Lexicographically earliest sequence such that for any value m, the number of distinct values between a pair of consecutive m's is distinct.
1, 1, 2, 1, 2, 2, 3, 1, 2, 3, 3, 4, 1, 2, 3, 4, 3, 4, 4, 5, 1, 2, 3, 4, 5, 5, 6, 1, 2, 3, 4, 5, 6, 4, 5, 6, 5, 6, 6, 7, 1, 2, 3, 4, 5, 6, 7, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 5, 6, 7, 8, 7, 8, 8, 9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 7, 8, 9, 9, 10, 1, 2, 3, 4, 5, 6, 7
Offset: 1
Keywords
Examples
The first terms with the number of distinct values enclosed by m = 1..4 below: n| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 ... a(n)| 1 1 2 1 2 2 3 1 2 3 3 4 1 2 3 4 3 4 4 5 1 2 3 ... ----+--------------------------------------------------------------------- 1's| 0, 1, 2, 3, 4, ... 2's| 1, 0, 2, 3, 4, ... 3's| 2, 0, 3, 1, 4, ... 4's| 3, 1, 0, ...
Links
- Michael S. Branicky, Table of n, a(n) for n = 1..10000
Programs
-
Python
from itertools import islice def agen(): # generator of terms e, a = set(), [] while True: an, allnew = 0, False while not allnew: allnew, an, nd = True, an+1, None for i in range(len(a)-1, -1, -1): if an == a[i]: nd = len(set(a[i+1:])) if (an, nd) in e: allnew = False break yield an; a.append(an); e.add((an, nd)) print(list(islice(agen(), 86))) # Michael S. Branicky, Feb 22 2024
Extensions
More terms from Michael S. Branicky, Feb 22 2024