This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A370583 #9 Feb 27 2024 14:25:39 %S A370583 0,1,2,4,10,20,44,88,204,440,908,1816,3776,7552,15364,31240,63744, %T A370583 127488,257592,515184,1036336,2079312,4166408,8332816,16709632, %U A370583 33470464,66978208,134067488,268236928,536473856,1073233840,2146467680,4293851680,8588355424,17177430640 %N A370583 Number of subsets of {1..n} such that it is not possible to choose a different prime factor of each element. %F A370583 a(n) = 2^n - A370582(n). %e A370583 The a(0) = 0 through a(5) = 20 subsets: %e A370583 . {1} {1} {1} {1} {1} %e A370583 {1,2} {1,2} {1,2} {1,2} %e A370583 {1,3} {1,3} {1,3} %e A370583 {1,2,3} {1,4} {1,4} %e A370583 {2,4} {1,5} %e A370583 {1,2,3} {2,4} %e A370583 {1,2,4} {1,2,3} %e A370583 {1,3,4} {1,2,4} %e A370583 {2,3,4} {1,2,5} %e A370583 {1,2,3,4} {1,3,4} %e A370583 {1,3,5} %e A370583 {1,4,5} %e A370583 {2,3,4} %e A370583 {2,4,5} %e A370583 {1,2,3,4} %e A370583 {1,2,3,5} %e A370583 {1,2,4,5} %e A370583 {1,3,4,5} %e A370583 {2,3,4,5} %e A370583 {1,2,3,4,5} %t A370583 Table[Length[Select[Subsets[Range[n]], Length[Select[Tuples[If[#==1,{},First/@FactorInteger[#]]&/@#], UnsameQ@@#&]]==0&]],{n,0,10}] %Y A370583 Multisets of this type are ranked by A355529, complement A368100. %Y A370583 For divisors instead of factors we have A355740, complement A368110. %Y A370583 The complement for set-systems is A367902, ranks A367906, unlabeled A368095. %Y A370583 The version for set-systems is A367903, ranks A367907, unlabeled A368094. %Y A370583 For non-isomorphic multiset partitions we have A368097, complement A368098. %Y A370583 The version for factorizations is A368413, complement A368414. %Y A370583 The complement is counted by A370582. %Y A370583 For a unique choice we have A370584. %Y A370583 Partial sums of A370587, complement A370586. %Y A370583 The minimal case is A370591. %Y A370583 The version for partitions is A370593, complement A370592. %Y A370583 For binary indices instead of factors we have A370637, complement A370636. %Y A370583 A006530 gives greatest prime factor, least A020639. %Y A370583 A027746 lists prime factors, A112798 indices, length A001222. %Y A370583 A355741 counts choices of a prime factor of each prime index. %Y A370583 Cf. A000040, A000720, A001055, A001414, A003963, A005117, A045778, A355739, A355745, A367867, A367905, A368187. %K A370583 nonn %O A370583 0,3 %A A370583 _Gus Wiseman_, Feb 26 2024 %E A370583 a(19)-a(34) from _Alois P. Heinz_, Feb 27 2024