This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A370584 #11 Mar 28 2025 13:42:31 %S A370584 1,1,2,4,6,12,18,36,48,68,104,208,284,568,888,1296,1548,3096,3968, %T A370584 7936,10736,15440,24008,48016,58848,73680,114368,132608,176240,352480, %U A370584 449824,899648,994976,1399968,2160720,2859584,3296048,6592096,10156672,14214576,16892352 %N A370584 Number of subsets of {1..n} such that only one set can be obtained by choosing a different prime factor of each element. %C A370584 For example, the only choice of a different prime factor of each element of (4,5,6) is (2,5,3). %e A370584 The a(0) = 1 through a(6) = 18 subsets: %e A370584 {} {} {} {} {} {} {} %e A370584 {2} {2} {2} {2} {2} %e A370584 {3} {3} {3} {3} %e A370584 {2,3} {4} {4} {4} %e A370584 {2,3} {5} {5} %e A370584 {3,4} {2,3} {2,3} %e A370584 {2,5} {2,5} %e A370584 {3,4} {2,6} %e A370584 {3,5} {3,4} %e A370584 {4,5} {3,5} %e A370584 {2,3,5} {3,6} %e A370584 {3,4,5} {4,5} %e A370584 {4,6} %e A370584 {2,3,5} %e A370584 {2,5,6} %e A370584 {3,4,5} %e A370584 {3,5,6} %e A370584 {4,5,6} %t A370584 Table[Length[Select[Subsets[Range[n]], Length[Union[Sort/@Select[Tuples[If[#==1, {},First/@FactorInteger[#]]&/@#], UnsameQ@@#&]]]==1&]],{n,0,10}] %Y A370584 For divisors instead of factors we have A051026, cf. A368110, A355740. %Y A370584 The version for set-systems is A367904, ranks A367908. %Y A370584 Multisets of this type are ranked by A368101, cf. A368100, A355529. %Y A370584 For existence we have A370582, differences A370586. %Y A370584 For nonexistence we have A370583, differences A370587. %Y A370584 Maximal sets of this type are counted by A370585. %Y A370584 The version for partitions is A370594, cf. A370592, A370593. %Y A370584 For binary indices instead of factors we have A370638, cf. A370636, A370637. %Y A370584 The version for factorizations is A370645, cf. A368414, A368413. %Y A370584 For unlabeled multiset partitions we have A370646, cf. A368098, A368097. %Y A370584 A006530 gives greatest prime factor, least A020639. %Y A370584 A027746 lists prime factors, A112798 indices, length A001222. %Y A370584 A355741 counts ways to choose a prime factor of each prime index. %Y A370584 Cf. A000040, A000720, A003963, A005117, A045778, A133686, A307984, A355739, A355744, A355745, A367905. %K A370584 nonn %O A370584 0,3 %A A370584 _Gus Wiseman_, Feb 26 2024 %E A370584 More terms from _Jinyuan Wang_, Mar 28 2025