This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A370591 #5 Feb 29 2024 10:48:11 %S A370591 0,1,1,1,2,2,4,4,7,11,16,16,30,30,39,73 %N A370591 Number of minimal subsets of {1..n} such that it is not possible to choose a different prime factor of each element (non-choosable). %e A370591 The a(1) = 1 through a(10) = 16 subsets: %e A370591 {1} {1} {1} {1} {1} {1} {1} {1} {1} {1} %e A370591 {2,4} {2,4} {2,4} {2,4} {2,4} {2,4} {2,4} %e A370591 {2,3,6} {2,3,6} {2,8} {2,8} {2,8} %e A370591 {3,4,6} {3,4,6} {4,8} {3,9} {3,9} %e A370591 {2,3,6} {4,8} {4,8} %e A370591 {3,4,6} {2,3,6} {2,3,6} %e A370591 {3,6,8} {2,6,9} {2,6,9} %e A370591 {3,4,6} {3,4,6} %e A370591 {3,6,8} {3,6,8} %e A370591 {4,6,9} {4,6,9} %e A370591 {6,8,9} {6,8,9} %e A370591 {2,5,10} %e A370591 {4,5,10} %e A370591 {5,8,10} %e A370591 {3,5,6,10} %e A370591 {5,6,9,10} %t A370591 Table[Length[fasmin[Select[Subsets[Range[n]], Length[Select[Tuples[prix/@#],UnsameQ@@#&]]==0&]]], {n,0,15}] %Y A370591 Minimal case of A370583, complement A370582. %Y A370591 For binary indices instead of factors we have A370642, minima of A370637. %Y A370591 A006530 gives greatest prime factor, least A020639. %Y A370591 A027746 lists prime factors, indices A112798, length A001222. %Y A370591 A355741 counts choices of a prime factor of each prime index. %Y A370591 A367902 counts choosable set-systems, ranks A367906, unlabeled A368095. %Y A370591 A367903 counts non-choosable set-systems, ranks A367907, unlabeled A368094. %Y A370591 A368098 counts choosable unlabeled multiset partitions, complement A368097. %Y A370591 A368100 ranks choosable multisets, complement A355529. %Y A370591 A368414 counts choosable factorizations, complement A368413. %Y A370591 A370585 counts maximal choosable sets. %Y A370591 A370592 counts choosable partitions, complement A370593. %Y A370591 Cf. A000040, A000720, A045778, A133686, A355739, A355744, A355745, A367771, A370584, A370586, A370587, A370589. %K A370591 nonn,more %O A370591 0,5 %A A370591 _Gus Wiseman_, Feb 28 2024