cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A370592 Number of integer partitions of n such that it is possible to choose a different prime factor of each part.

This page as a plain text file.
%I A370592 #9 Mar 01 2024 15:54:56
%S A370592 1,0,1,1,1,2,1,3,3,4,4,5,6,7,9,11,12,12,16,18,22,26,29,29,37,41,49,55,
%T A370592 61,68,72,88,98,110,120,135,146,166,190,209,227,252,277,309,346,379,
%U A370592 413,447,500,548,606,665,727,785,857,949,1033,1132,1228,1328,1440
%N A370592 Number of integer partitions of n such that it is possible to choose a different prime factor of each part.
%F A370592 a(n) = A000041(n) - A370593(n).
%e A370592 The partition (10,6,4) has choice (5,3,2) so is counted under a(20).
%e A370592 The a(0) = 1 through a(10) = 4 partitions:
%e A370592   ()  .  (2)  (3)  (4)  (5)    (6)  (7)    (8)    (9)    (10)
%e A370592                         (3,2)       (4,3)  (5,3)  (5,4)  (6,4)
%e A370592                                     (5,2)  (6,2)  (6,3)  (7,3)
%e A370592                                                   (7,2)  (5,3,2)
%e A370592 The a(0) = 1 through a(17) = 12 partitions (0 = {}, A..H = 10..17):
%e A370592   0  .  2  3  4  5   6  7   8   9   A    B   C    D    E    F    G    H
%e A370592                  32     43  53  54  64   65  66   76   86   87   97   98
%e A370592                         52  62  63  73   74  75   85   95   96   A6   A7
%e A370592                                 72  532  83  A2   94   A4   A5   B5   B6
%e A370592                                          92  543  A3   B3   B4   C4   C5
%e A370592                                              732  B2   C2   C3   D3   D4
%e A370592                                                   652  653  D2   E2   E3
%e A370592                                                        743  654  754  F2
%e A370592                                                        752  753  763  665
%e A370592                                                             762  853  764
%e A370592                                                             A32  952  A43
%e A370592                                                                  B32  7532
%t A370592 Table[Length[Select[IntegerPartitions[n], Length[Select[Tuples[If[#==1, {},First/@FactorInteger[#]]&/@#], UnsameQ@@#&]]>0&]],{n,0,30}]
%Y A370592 The version for divisors instead of factors is A239312, ranks A368110.
%Y A370592 The version for set-systems is A367902, ranks A367906, unlabeled A368095.
%Y A370592 The complement for set-systems is A367903, ranks A367907, unlabeled A368094.
%Y A370592 For unlabeled multiset partitions we have A368098, complement A368097.
%Y A370592 These partitions have ranks A368100.
%Y A370592 The version for factorizations is A368414, complement A368413.
%Y A370592 The complement is counted by A370593, ranks A355529.
%Y A370592 For a unique choice we have A370594, ranks A370647.
%Y A370592 A006530 gives greatest prime factor, least A020639.
%Y A370592 A027746 lists prime factors, A112798 indices, length A001222.
%Y A370592 A355741 counts choices of a prime factor of each prime index.
%Y A370592 Cf. A000040, A000720, A133686, A355739, A355740, A355745, A367771, A367905, A370585, A370586, A370636.
%K A370592 nonn
%O A370592 0,6
%A A370592 _Gus Wiseman_, Feb 29 2024