This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A370593 #6 Mar 01 2024 09:35:59 %S A370593 0,1,1,2,4,5,10,12,19,26,38,51,71,94,126,165,219,285,369,472,605,766, %T A370593 973,1226,1538,1917,2387,2955,3657,4497,5532,6754,8251,10033,12190, %U A370593 14748,17831,21471,25825,30976,37111,44331,52897,62952,74829,88755,105145,124307 %N A370593 Number of integer partitions of n such that it is not possible to choose a different prime factor of each part. %F A370593 a(n) = A000041(n) - A370592(n). %e A370593 The a(0) = 0 through a(7) = 12 partitions: %e A370593 . (1) (11) (21) (22) (41) (33) (61) %e A370593 (111) (31) (221) (42) (322) %e A370593 (211) (311) (51) (331) %e A370593 (1111) (2111) (222) (421) %e A370593 (11111) (321) (511) %e A370593 (411) (2221) %e A370593 (2211) (3211) %e A370593 (3111) (4111) %e A370593 (21111) (22111) %e A370593 (111111) (31111) %e A370593 (211111) %e A370593 (1111111) %t A370593 Table[Length[Select[IntegerPartitions[n], Length[Select[Tuples[If[#==1,{},First/@FactorInteger[#]]&/@#], UnsameQ@@#&]]==0&]],{n,0,30}] %Y A370593 The complement for divisors instead of factors is A239312, ranks A368110. %Y A370593 These partitions have ranks A355529, complement A368100. %Y A370593 The complement for set-systems is A367902, ranks A367906, unlabeled A368095. %Y A370593 The version for set-systems is A367903, ranks A367907, unlabeled A368094. %Y A370593 For unlabeled multiset partitions we have A368097, complement A368098. %Y A370593 The version for factorizations is A368413, complement A368414. %Y A370593 The complement is counted by A370592. %Y A370593 For a unique choice we have A370594, ranks A370647. %Y A370593 A006530 gives greatest prime factor, least A020639. %Y A370593 A027746 lists prime factors, A112798 indices, length A001222. %Y A370593 A355741 counts choices of a prime factor of each prime index. %Y A370593 Cf. A000040, A000720, A133686, A355739, A355740, A367771, A367867, A367905, A370583, A370585, A370586, A370636. %K A370593 nonn %O A370593 0,4 %A A370593 _Gus Wiseman_, Feb 29 2024