A370594 Number of integer partitions of n such that only one set can be obtained by choosing a different prime factor of each part.
1, 0, 1, 1, 1, 2, 0, 3, 3, 4, 3, 4, 5, 5, 8, 10, 11, 7, 14, 13, 19, 23, 24, 20, 30, 33, 40, 47, 49, 55, 53, 72, 80, 90, 92, 110, 110, 132, 154, 169, 180, 201, 218, 246, 281, 302, 323, 348, 396, 433, 482, 530, 584, 618, 670, 754, 823, 903, 980, 1047, 1137
Offset: 0
Keywords
Examples
The partition (10,6,4) has unique choice (5,3,2) so is counted under a(20). The a(0) = 1 through a(12) = 5 partitions: () . (2) (3) (4) (5) . (7) (8) (9) (6,4) (11) (6,6) (3,2) (4,3) (5,3) (5,4) (7,3) (7,4) (7,5) (5,2) (6,2) (6,3) (5,3,2) (8,3) (10,2) (7,2) (9,2) (5,4,3) (7,3,2)
Crossrefs
Programs
-
Mathematica
Table[Length[Select[IntegerPartitions[n], Length[Union[Sort/@Select[Tuples[If[#==1, {},First/@FactorInteger[#]]&/@#], UnsameQ@@#&]]]==1&]],{n,0,30}]