A370599 a(n) is the number of distinct triangles with integral side-lengths for which the perimeter 2*n divides the area.
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 2, 0, 0, 1, 0, 0, 1, 0, 0, 2, 0, 1, 1, 1, 2, 2, 0, 0, 1, 1, 0, 4, 0, 1, 3, 0, 0, 1, 0, 0, 0, 0, 0, 3, 1, 2, 1, 0, 0, 3, 0, 0, 3, 2, 1, 4, 0, 2, 0, 3, 0, 2, 0, 0, 2, 2, 3, 1, 0, 2, 4, 1, 0, 8, 1, 0, 1
Offset: 1
Examples
a(18) = 1, because only the triangle (9, 10, 17) satisfies the condition: A/(2*n) = 36/36 = 1. (9, 10, 17) is one of the five triangles for which the perimeter is equal to the area (see A098030). a(42) = 4, because exactly the 4 triangles (10, 35, 39) with A/(2*n) = 168/84 = 2, (14, 30, 40) with A/(2*n) = 168/84 = 2, (15, 34, 35) with A/(2*n) = 252/84 = 3 and (26, 28, 30) with A/(2*n) = 336/84 = 4 satisfy the condition. a(426) = 0, because no triangle satisfies the condition. Therefore, a(n) = 0 for all n for which n*k = 426 for positive integers k.
Links
- Felix Huber, Table of n, a(n) for n = 1..500
- Wikipedia, Heron's formula
Programs
-
Maple
A370599 := proc(n) local u, v, w, A, q, i; i := 0; for u to floor(2/3*n) do for v from max(u, floor(n - u) + 1) to floor(n - 1/2*u) do w := 2*n - u - v; A := sqrt(n*(n - u)*(n - v)*(n - w)); if A = floor(A) then q := 1/2*A/n; if q = floor(q) then i := i + 1; end if; end if; end do; end do; return i; end proc; seq(A370599(n), n = 1 .. 87);
Formula
a(n*k) >= a(n) for positive integers k.
Comments