This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A370610 #12 Feb 24 2024 11:08:25 %S A370610 0,1,4,9,324,576,4356,5476,23104,32041,13527684,13675204,17430625, %T A370610 21307456,34857216,35617024,43507216,56731024,65318724,73256481, %U A370610 81432576,102576384,105637284,139854276,152843769,157326849,158306724,176305284,180472356,183467025,187635204 %N A370610 Squares such that any two consecutive decimal digits differ by 1 after arranging the digits in decreasing order. %C A370610 Squares in A215014. There are 160 terms in this sequence. %H A370610 Michael S. Branicky, <a href="/A370610/b370610.txt">Table of n, a(n) for n = 1..160</a> %o A370610 (PARI) isconsecutive(m, {b=10})=my(v=vecsort(digits(m, b))); for(i=2, #v, if(v[i]!=1+v[i-1], return(0))); 1 \\ isconsecutive(k, b) == 1 if and only if any two consecutive digits of the base-n expansion of m differ by 1 after arranging the digits in decreasing order %o A370610 a(n) = issquare(n) && isconsecutive(n) %o A370610 (Python) %o A370610 from math import isqrt %o A370610 from sympy.ntheory import digits %o A370610 def afull(): return([i*i for i in range(isqrt(10**10)+1) if len(d:=sorted(str(i*i))) == ord(d[-1])-ord(d[0])+1 == len(set(d))]) %o A370610 print(afull()) # _Michael S. Branicky_, Feb 23 2024 %Y A370610 Cf. A215014, A370370. Supersequence of A036745. %Y A370610 The square roots are given by A370362. %K A370610 nonn,base,fini,full %O A370610 1,3 %A A370610 _Jianing Song_, Feb 23 2024