cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A370612 The smallest number whose prime factor concatenation, when written in base n, does not contain 0 and contains all digits 1,...,(n-1) at least once.

Original entry on oeis.org

3, 5, 14, 133, 706, 2490, 24258, 217230, 2992890, 24674730, 647850030, 4208072190, 82417704810
Offset: 2

Views

Author

Chai Wah Wu, Apr 30 2024

Keywords

Comments

All terms are squarefree. Many thanks to Michael Branicky for pointing out errors in the terms in the original submission.

Examples

			a(2) = 3 = 3 whose prime factor in base 2 is: 11.
a(3) = 5 = 5 whose prime factor in base 3 is: 12.
a(4) = 14 = 2*7 whose prime factors in base 4 are: 2, 13.
a(5) = 133 = 7*19 whose prime factors in base 5 are: 12, 34.
a(6) = 706 = 2*353 whose prime factors in base 6 are: 2, 1345.
a(7) = 2490 = 2*3*5*83 whose prime factors in base 7 are: 2, 3, 5, 146.
a(8) = 24258 = 2*3*13*311 whose prime factors in base 8 are: 2, 3, 15, 467.
a(9) = 217230 = 2*3*5*13*557 whose prime factors in base 9 are: 2, 3, 5, 14, 678.
a(10) = 2992890 = 2*3*5*67*1489.
a(11) = 24674730 = 2*3*5*19*73*593 whose prime factors in base 11 are: 2, 3, 5, 18, 67, 49a.
a(12) = 647850030 = 2*3*5*19*1136579 whose prime factors in base 12 are: 2, 3, 5, 17, 4698ab.
a(13) = 4208072190 = 2*3*5*7*61*89*3691 whose prime factors in base 13 are: 2, 3, 5, 7, 49, 6b, 18ac.
a(14) = 82417704810 = 2*3*5*7*23*937*18211 whose prime factors in base 14 are: 2, 3, 5, 7, 19, 4ad, 68cb.
		

Crossrefs

Programs

  • Python
    from math import factorial
    from itertools import count
    from sympy import primefactors
    from sympy.ntheory import digits
    def A370612(n): return next(k for k in count(max(factorial(n-1),2)) if 0 not in (s:=set.union(*(set(digits(p,n)[1:]) for p in primefactors(k)))) and len(s) == n-1)

Formula

(n-1)! <= a(n) <= A371194(n).

Extensions

a(13)-(14) from Dominic McCarty, Jan 07 2025