This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A370614 #22 Apr 30 2024 18:45:20 %S A370614 1,1,1,1,4,1,8,1,16,46,1,32,146,330,1,64,454,1066,1374,1,128,1394, %T A370614 4718,5658,10554,1,256,4246,20266,23118,41506,57054,101502,1,512, %U A370614 12866,85310,93930,237686,302730,525642,657210,1165104,1,1024,38854,354106,380094 %N A370614 Triangle T(n,k) in which row n lists in increasing order the number of acyclic orientations of complete multipartite graphs K_lambda, where lambda is a partition of n into distinct parts; triangle T(n,k), n>=0, k = 1..A000009(n), read by rows. %C A370614 An acyclic orientation is an assignment of a direction to each edge such that no cycle in the graph is consistently oriented. Stanley showed that the number of acyclic orientations of a graph G is equal to the absolute value of the chromatic polynomial X_G(q) evaluated at q=-1. %H A370614 Alois P. Heinz, <a href="/A370614/b370614.txt">Rows n = 0..46, flattened</a> %H A370614 Richard P. Stanley, <a href="http://dx.doi.org/10.1016/0012-365X(73)90108-8">Acyclic Orientations of Graphs</a>, Discrete Mathematics, 5 (1973), pages 171-178, doi:10.1016/0012-365X(73)90108-8 %H A370614 Wikipedia, <a href="https://en.wikipedia.org/wiki/Acyclic_orientation">Acyclic orientation</a> %H A370614 Wikipedia, <a href="https://en.wikipedia.org/wiki/Multipartite_graph">Multipartite graph</a> %e A370614 Triangle T(n,k) begins: %e A370614 1; %e A370614 1; %e A370614 1; %e A370614 1, 4; %e A370614 1, 8; %e A370614 1, 16, 46; %e A370614 1, 32, 146, 330; %e A370614 1, 64, 454, 1066, 1374; %e A370614 1, 128, 1394, 4718, 5658, 10554; %e A370614 1, 256, 4246, 20266, 23118, 41506, 57054, 101502; %e A370614 ... %p A370614 g:= proc(n) option remember; `if`(n=0, 1, add( %p A370614 expand(x*g(n-j))*binomial(n-1, j-1), j=1..n)) %p A370614 end: %p A370614 h:= proc() option remember; local q, l, b; q, l, b:= -1, args, %p A370614 proc(n, j) option remember; `if`(j=1, mul(q-i, i=0..n-1)* %p A370614 (q-n)^l[1], add(b(n+m, j-1)*coeff(g(l[j]), x, m), m=0..l[j])) %p A370614 end; abs(b(0, nops(l))) %p A370614 end: %p A370614 b:= proc(n, i, l) `if`(i*(i+1)/2<n, [], `if`(n=0, [h(l)], %p A370614 [b(n-i, min(n-i, i-1), [l[], i])[], b(n, i-1, l)[]])) %p A370614 end: %p A370614 T:= n-> sort(b(n$2, [0]))[]: %p A370614 seq(T(n), n=0..12); %Y A370614 Columns k=1-2 give: A000012, A011782 (for n>=3). %Y A370614 Row sums give A370613. %Y A370614 Cf. A000009, A267383, A372254, A372261, A372326, A372396. %K A370614 nonn,tabf %O A370614 0,5 %A A370614 _Alois P. Heinz_, Apr 30 2024