This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A370621 #14 May 02 2024 09:49:22 %S A370621 1,2,16,119,948,7732,64231,540311,4588076,39244106,337624066, %T A370621 2918384229,25325306031,220497804256,1925231880973,16850975055139, %U A370621 147807248526268,1298926641563548,11434042768577866,100800817171002817,889839745865544598 %N A370621 Coefficient of x^n in the expansion of ( (1-x) / (1-x-x^2)^3 )^n. %F A370621 a(n) = Sum_{k=0..floor(n/2)} binomial(3*n+k-1,k) * binomial(3*n-k-1,n-2*k). %F A370621 The g.f. exp( Sum_{k>=1} a(k) * x^k/k ) has integer coefficients and equals (1/x) * Series_Reversion( x * (1-x-x^2)^3 / (1-x) ). See A369487. %t A370621 a[n_]:=SeriesCoefficient[((1-x)/(1-x-x^2)^3)^n,{x,0,n}]; Array[a,21,0] (* _Stefano Spezia_, May 01 2024 *) %o A370621 (PARI) a(n, s=2, t=3, u=1) = sum(k=0, n\s, binomial(t*n+k-1, k)*binomial((t-u+1)*n-(s-1)*k-1, n-s*k)); %Y A370621 Cf. A370620, A370622, A370623. %Y A370621 Cf. A369487. %K A370621 nonn %O A370621 0,2 %A A370621 _Seiichi Manyama_, May 01 2024