This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A370624 #12 May 01 2024 08:58:30 %S A370624 1,1,3,13,55,231,987,4278,18711,82390,364793,1622556,7244419,32449158, %T A370624 145747290,656199048,2960596359,13382107227,60587421882,274712295550, %U A370624 1247233045905,5669390005950,25798654040580,117513750346200,535766200488675,2444698473079356 %N A370624 Coefficient of x^n in the expansion of 1 / (1-x-x^3)^n. %F A370624 a(n) = Sum_{k=0..floor(n/3)} binomial(n+k-1,k) * binomial(2*n-2*k-1,n-3*k). %F A370624 The g.f. exp( Sum_{k>=1} a(k) * x^k/k ) has integer coefficients and equals (1/x) * Series_Reversion( x * (1-x-x^3) ). %o A370624 (PARI) a(n, s=3, t=1, u=0) = sum(k=0, n\s, binomial(t*n+k-1, k)*binomial((t-u+1)*n-(s-1)*k-1, n-s*k)); %Y A370624 Cf. A049140. %K A370624 nonn %O A370624 0,3 %A A370624 _Seiichi Manyama_, May 01 2024