This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A370628 #13 May 10 2024 08:50:00 %S A370628 1,2,1,3,2,1,5,2,3,1,7,2,1,11,2,3,5,4,3,7,2,13,1,17,2,15,1,19,2,1,23, %T A370628 2,9,1,5,7,6,1,29,2,5,11,3,13,4,11,7,1,31,2,5,13,6,1,37,2,7,3,17,4,15, %U A370628 1,41,2,1,43,2,33,1,47,2,35,3,19,4,3,23,4,5 %N A370628 a(n) = GCD(A280864(n), A280864(n+1)). %H A370628 Rémy Sigrist, <a href="/A370628/a370628.gp.txt">PARI program</a> %F A370628 GCD(a(n), a(n+1)) = 1. %F A370628 A007947(a(n)) = A280738(n). %F A370628 a(n) = 1 iff n belongs to A280774. %e A370628 a(89) = GCD(A280864(89), A280864(90)) = GCD(90, 135) = 45. %t A370628 terms = 100; %t A370628 rad[n_] := Times @@ FactorInteger[n][[All, 1]]; %t A370628 A280864 = Reap[present = 0; p = 1; pp = 1; %t A370628 Do[forbidden = GCD[p, pp]; mandatory = p/forbidden; %t A370628 a = mandatory; %t A370628 While[BitGet[present, a] > 0 || GCD[forbidden, a] > 1, %t A370628 a += mandatory]; %t A370628 Sow[a]; %t A370628 present += 2^a; pp = p; p = rad[a], %t A370628 {terms}]][[2, 1]]; %t A370628 Clear[a]; %t A370628 a[n_] := GCD[A280864[[n]], A280864[[n + 1]]]; %t A370628 Table[a[n], {n, 1, terms - 1}] (* _Jean-François Alcover_, May 10 2024, adapted from _Rémy Sigrist_'s PARI program *) %o A370628 (PARI) \\ See Links section. %Y A370628 Cf. A007947, A280738, A280774, A280864. %K A370628 nonn %O A370628 1,2 %A A370628 _Rémy Sigrist_, May 01 2024