This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A370629 #16 May 04 2024 14:56:51 %S A370629 1,2,3,6,5,4,10,8,11,7,9,14,13,12,16,15,18,17,22,23,21,19,20,26,28,24, %T A370629 29,25,27,35,36,37,40,34,30,31,32,39,38,33,42,41,47,48,49,52,43,44,45, %U A370629 58,56,46,59,57,55,51,54,50,53,63,65,64,60,62,61,68,70 %N A370629 Lexicographically earliest sequence of distinct positive integers such that for any n > 0, the Zeckendorf expansions of n and a(n) have exactly one common term. %C A370629 This sequence is a self-inverse permutation of the positive integers. %C A370629 Fixed points correspond to positive Fibonacci numbers. %H A370629 Rémy Sigrist, <a href="/A370629/b370629.txt">Table of n, a(n) for n = 1..10000</a> %H A370629 Rémy Sigrist, <a href="/A370629/a370629.gp.txt">PARI program</a> %H A370629 <a href="/index/Z#Zeckendorf">Index entries for sequences related to Zeckendorf expansion of n</a> %H A370629 <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a> %F A370629 A000120(A003714(n), A003714(a(n))) = 1. %e A370629 The first terms, alongside the Zeckendorf expansion in binary of n and of a(n), are: %e A370629 n a(n) z(n) z(a(n)) %e A370629 -- ---- ------ ------- %e A370629 1 1 1 1 %e A370629 2 2 10 10 %e A370629 3 3 100 100 %e A370629 4 6 101 1001 %e A370629 5 5 1000 1000 %e A370629 6 4 1001 101 %e A370629 7 10 1010 10010 %e A370629 8 8 10000 10000 %e A370629 9 11 10001 10100 %e A370629 10 7 10010 1010 %e A370629 11 9 10100 10001 %e A370629 12 14 10101 100001 %o A370629 (PARI) \\ See Links section. %Y A370629 Cf. A000120, A003714, A238758, A332022. %K A370629 nonn,base %O A370629 1,2 %A A370629 _Rémy Sigrist_, May 01 2024