This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A370630 #16 May 04 2024 14:57:01 %S A370630 1,4,3,11,8,9,6,5,7,2,10,12,14,13,15,16,18,17,20,23,21,22,19,25,26,24, %T A370630 27,29,28,30,35,33,37,32,38,34,36,31,41,42,39,43,47,40,44,48,45,49,46, %U A370630 52,60,53,56,51,58,50,59,55,57,54,61,63,62,64,68,65,69 %N A370630 Lexicographically earliest sequence of distinct positive integers such that the Zeckendorf expansions of two consecutive terms have exactly one common term. %C A370630 Conjecture: this sequence is a permutation of the positive integers. %H A370630 Rémy Sigrist, <a href="/A370630/b370630.txt">Table of n, a(n) for n = 1..10000</a> %H A370630 Rémy Sigrist, <a href="/A370630/a370630.gp.txt">PARI program</a> %H A370630 <a href="/index/Z#Zeckendorf">Index entries for sequences related to Zeckendorf expansion of n</a> %F A370630 A000120(A003714(a(n)), A003714(a(n+1))) = 1. %e A370630 The first terms, alongside the Zeckendorf expansion in binary of a(n), are: %e A370630 n a(n) z(a(n)) %e A370630 -- ---- ------- %e A370630 1 1 1 %e A370630 2 4 101 %e A370630 3 3 100 %e A370630 4 11 10100 %e A370630 5 8 10000 %e A370630 6 9 10001 %e A370630 7 6 1001 %e A370630 8 5 1000 %e A370630 9 7 1010 %e A370630 10 2 10 %e A370630 11 10 10010 %e A370630 12 12 10101 %o A370630 (PARI) \\ See Links section. %Y A370630 Cf. A000120, A003714, A226077, A332565, A370631. %K A370630 nonn,base %O A370630 1,2 %A A370630 _Rémy Sigrist_, May 01 2024