cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A370630 Lexicographically earliest sequence of distinct positive integers such that the Zeckendorf expansions of two consecutive terms have exactly one common term.

This page as a plain text file.
%I A370630 #16 May 04 2024 14:57:01
%S A370630 1,4,3,11,8,9,6,5,7,2,10,12,14,13,15,16,18,17,20,23,21,22,19,25,26,24,
%T A370630 27,29,28,30,35,33,37,32,38,34,36,31,41,42,39,43,47,40,44,48,45,49,46,
%U A370630 52,60,53,56,51,58,50,59,55,57,54,61,63,62,64,68,65,69
%N A370630 Lexicographically earliest sequence of distinct positive integers such that the Zeckendorf expansions of two consecutive terms have exactly one common term.
%C A370630 Conjecture: this sequence is a permutation of the positive integers.
%H A370630 Rémy Sigrist, <a href="/A370630/b370630.txt">Table of n, a(n) for n = 1..10000</a>
%H A370630 Rémy Sigrist, <a href="/A370630/a370630.gp.txt">PARI program</a>
%H A370630 <a href="/index/Z#Zeckendorf">Index entries for sequences related to Zeckendorf expansion of n</a>
%F A370630 A000120(A003714(a(n)), A003714(a(n+1))) = 1.
%e A370630 The first terms, alongside the Zeckendorf expansion in binary of a(n), are:
%e A370630   n   a(n)  z(a(n))
%e A370630   --  ----  -------
%e A370630    1     1        1
%e A370630    2     4      101
%e A370630    3     3      100
%e A370630    4    11    10100
%e A370630    5     8    10000
%e A370630    6     9    10001
%e A370630    7     6     1001
%e A370630    8     5     1000
%e A370630    9     7     1010
%e A370630   10     2       10
%e A370630   11    10    10010
%e A370630   12    12    10101
%o A370630 (PARI) \\ See Links section.
%Y A370630 Cf. A000120, A003714, A226077, A332565, A370631.
%K A370630 nonn,base
%O A370630 1,2
%A A370630 _Rémy Sigrist_, May 01 2024