cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A370634 A135507(n) is the product of the first n terms of this sequence.

This page as a plain text file.
%I A370634 #24 May 19 2024 13:15:56
%S A370634 1,4,5,3,3,3,9,4,3,3,13,3,3,9,3,3,19,3,3,3,9,13,25,3,3,3,3,9,31,3,3,4,
%T A370634 13,19,9,3,39,3,3,3,43,9,3,13,3,25,49,3,3,3,19,3,55,3,3,3,3,31,61,3,3,
%U A370634 3,3,3,3,3,69,19,3,3,73,3,3,39,3,3,3,3,81,3
%N A370634 A135507(n) is the product of the first n terms of this sequence.
%C A370634 Compactification of A135507 akin to A000705 with respect to A002201.
%H A370634 Michael De Vlieger, <a href="/A370634/b370634.txt">Table of n, a(n) for n = 1..10000</a>
%H A370634 Michael De Vlieger, <a href="/A370634/a370634.png">Log log scatterplot of a(n)</a>, n = 1..2^20.
%F A370634 For n > 1, 3 <= a(n) <= n+2.
%F A370634 For p = A001359(i) such that gcd(a(p-1), p) = 1, a(p) = p+2 = A006512(i).
%e A370634 Table of first 20 terms of this sequence and S = A135507.
%e A370634    n            S(n)  a(n)
%e A370634   ------------------------
%e A370634    1              1     1
%e A370634    2              4     4
%e A370634    3             20     5
%e A370634    4             60     3
%e A370634    5            180     3
%e A370634    6            540     3
%e A370634    7           4860     9
%e A370634    8          19440     4
%e A370634    9          58320     3
%e A370634   10         174960     3
%e A370634   11        2274480    13
%e A370634   12        6823440     3
%e A370634   13       20470320     3
%e A370634   14      184232880     9
%e A370634   15      552698640     3
%e A370634   16     1658095920     3
%e A370634   17    31503822480    19
%e A370634   18    94511467440     3
%e A370634   19   283534402320     3
%e A370634   20   850603206960     3
%t A370634 nn = 120; j = 1; {1}~Join~Reap[Do[k = 2 j + LCM[j, i]; Sow[k/j]; j = k, {i, 2, nn}] ][[-1, 1]]
%Y A370634 Cf. A001359, A003418, A006512, A135507.
%K A370634 nonn
%O A370634 1,2
%A A370634 _Michael De Vlieger_, May 19 2024