This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A370638 #13 Mar 28 2025 14:12:56 %S A370638 1,2,4,6,12,19,30,45,90,147,230,343,504,716,994,1352,2704,4349,6469, %T A370638 9162,12585,16862,22122,28617,36653,46431,58075,72097,88456,107966, %U A370638 130742,157647,315294,494967,704753,950080,1234301,1565165,1945681,2387060,2890368,3470798 %N A370638 Number of subsets of {1..n} such that a unique set can be obtained by choosing a different binary index of each element. %C A370638 A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. %H A370638 Wikipedia, <a href="https://en.wikipedia.org/wiki/Axiom_of_choice">Axiom of choice</a>. %F A370638 a(2^n - 1) = A370818(n). %e A370638 The set {3,4} has binary indices {{1,2},{3}}, with two choices {1,3}, {2,3}, so is not counted under a(4). %e A370638 The a(0) = 1 through a(5) = 19 subsets: %e A370638 {} {} {} {} {} {} %e A370638 {1} {1} {1} {1} {1} %e A370638 {2} {2} {2} {2} %e A370638 {1,2} {1,2} {4} {4} %e A370638 {1,3} {1,2} {1,2} %e A370638 {2,3} {1,3} {1,3} %e A370638 {1,4} {1,4} %e A370638 {2,3} {1,5} %e A370638 {2,4} {2,3} %e A370638 {1,2,4} {2,4} %e A370638 {1,3,4} {4,5} %e A370638 {2,3,4} {1,2,4} %e A370638 {1,2,5} %e A370638 {1,3,4} %e A370638 {1,3,5} %e A370638 {2,3,4} %e A370638 {2,3,5} %e A370638 {2,4,5} %e A370638 {3,4,5} %t A370638 bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1]; %t A370638 Table[Length[Select[Subsets[Range[n]],Length[Union[Sort /@ Select[Tuples[bpe/@#],UnsameQ@@#&]]]==1&]],{n,0,10}] %Y A370638 Set systems of this type are counted by A367904, ranks A367908. %Y A370638 A version for MM-numbers of multisets is A368101. %Y A370638 For prime indices we have A370584. %Y A370638 This is the unique version of A370636, complement A370637. %Y A370638 The maximal case is A370640, differences A370641. %Y A370638 Factorizations of this type are counted by A370645. %Y A370638 The case A370818 is the restriction to A000225. %Y A370638 A048793 lists binary indices, A000120 length, A272020 reverse, A029931 sum. %Y A370638 A058891 counts set-systems, A003465 covering, A323818 connected. %Y A370638 A070939 gives length of binary expansion. %Y A370638 A096111 gives product of binary indices. %Y A370638 Cf. A133686, A134964, A326031, A326702, A367772, A367867, A367905, A367909, A367912, A368109. %K A370638 nonn %O A370638 0,2 %A A370638 _Gus Wiseman_, Mar 09 2024 %E A370638 More terms from _Jinyuan Wang_, Mar 28 2025