This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A370639 #9 Mar 09 2024 15:28:28 %S A370639 0,1,2,3,7,10,15,22,61,81,112,154,207,276,355,464,1771,2166,2724,3445, %T A370639 4246,5292,6420,7922,9586,11667,13768,16606,19095,22825,26498,31421, %U A370639 187223,213684,247670,289181,331301,385079,440411,510124,575266,662625,747521 %N A370639 Number of subsets of {1..n} containing n such that it is possible to choose a different binary index of each element. %C A370639 A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. %H A370639 Wikipedia, <a href="https://en.wikipedia.org/wiki/Axiom_of_choice">Axiom of choice</a>. %F A370639 First differences of A370636. %e A370639 The a(0) = 0 through a(6) = 15 subsets: %e A370639 . {1} {2} {3} {4} {5} {6} %e A370639 {1,2} {1,3} {1,4} {1,5} {1,6} %e A370639 {2,3} {2,4} {2,5} {2,6} %e A370639 {3,4} {3,5} {3,6} %e A370639 {1,2,4} {4,5} {4,6} %e A370639 {1,3,4} {1,2,5} {5,6} %e A370639 {2,3,4} {1,3,5} {1,2,6} %e A370639 {2,3,5} {1,3,6} %e A370639 {2,4,5} {1,4,6} %e A370639 {3,4,5} {1,5,6} %e A370639 {2,3,6} %e A370639 {2,5,6} %e A370639 {3,4,6} %e A370639 {3,5,6} %e A370639 {4,5,6} %t A370639 bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1]; %t A370639 Table[Length[Select[Subsets[Range[n]],MemberQ[#,n] && Select[Tuples[bpe/@#],UnsameQ@@#&]!={}&]],{n,0,10}] %Y A370639 Simple graphs of this type are counted by A133686, covering A367869. %Y A370639 Unlabeled graphs of this type are counted by A134964, complement A140637. %Y A370639 Simple graphs not of this type are counted by A367867, covering A367868. %Y A370639 Set systems of this type are counted by A367902, ranks A367906. %Y A370639 Set systems not of this type are counted by A367903, ranks A367907. %Y A370639 Set systems uniquely of this type are counted by A367904, ranks A367908. %Y A370639 Unlabeled multiset partitions of this type are A368098, complement A368097. %Y A370639 A version for MM-numbers of multisets is A368100, complement A355529. %Y A370639 Factorizations of this type are A368414/A370814, complement A368413/A370813. %Y A370639 For prime instead of binary indices we have A370586, differences of A370582. %Y A370639 The complement for prime indices is A370587, differences of A370583. %Y A370639 The complement is counted by A370589, differences of A370637. %Y A370639 Partial sums are A370636. %Y A370639 The complement has partial sums A370637/A370643, minima A370642/A370644. %Y A370639 The case of a unique choice is A370641, differences of A370638. %Y A370639 A048793 lists binary indices, A000120 length, A272020 reverse, A029931 sum. %Y A370639 A058891 counts set-systems, A003465 covering, A323818 connected. %Y A370639 A070939 gives length of binary expansion. %Y A370639 A096111 gives product of binary indices. %Y A370639 A326031 gives weight of the set-system with BII-number n. %Y A370639 Cf. A000612, A326702, A355739, A355740, A367770, A367772, A367905, A367909, A367912, A368094, A368095, A368109, A370640. %K A370639 nonn %O A370639 0,3 %A A370639 _Gus Wiseman_, Mar 08 2024 %E A370639 a(19)-a(42) from _Alois P. Heinz_, Mar 09 2024