This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A370641 #12 Mar 28 2025 15:26:46 %S A370641 0,1,1,2,3,5,9,15,32,45,67,98,141,197,263,358,1201,1493,1920,2482, %T A370641 3123,3967,4884,6137,7584,9369,11169,13664,15818,19152,22418,26905, %U A370641 151286,173409,202171,237572,273651,320040,367792,428747,485697,562620,637043,734738,815492 %N A370641 Number of maximal subsets of {1..n} containing n such that it is possible to choose a different binary index of each element. %C A370641 A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. %C A370641 Also choices of A070939(n) elements of {1..n} containing n such that it is possible to choose a different binary index of each. %e A370641 The a(0) = 0 through a(7) = 15 subsets: %e A370641 . {1} {1,2} {1,3} {1,2,4} {1,2,5} {1,2,6} {1,2,7} %e A370641 {2,3} {1,3,4} {1,3,5} {1,3,6} {1,3,7} %e A370641 {2,3,4} {2,3,5} {1,4,6} {1,4,7} %e A370641 {2,4,5} {1,5,6} {1,5,7} %e A370641 {3,4,5} {2,3,6} {1,6,7} %e A370641 {2,5,6} {2,3,7} %e A370641 {3,4,6} {2,4,7} %e A370641 {3,5,6} {2,5,7} %e A370641 {4,5,6} {2,6,7} %e A370641 {3,4,7} %e A370641 {3,5,7} %e A370641 {3,6,7} %e A370641 {4,5,7} %e A370641 {4,6,7} %e A370641 {5,6,7} %t A370641 bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1]; %t A370641 Table[Length[Select[Subsets[Range[n],{IntegerLength[n,2]}],MemberQ[#,n] && Length[Union[Sort/@Select[Tuples[bpe/@#], UnsameQ@@#&]]]>0&]],{n,0,25}] %Y A370641 A version for set-systems is A368601. %Y A370641 For prime indices we have A370590, without n A370585, see also A370591. %Y A370641 This is the maximal case of A370636 requiring n, complement A370637. %Y A370641 This is the maximal case of A370639, complement A370589. %Y A370641 Without requiring n we have A370640. %Y A370641 Dominated by A370819. %Y A370641 A048793 lists binary indices, A000120 length, A272020 reverse, A029931 sum. %Y A370641 A058891 counts set-systems, A003465 covering, A323818 connected. %Y A370641 A070939 gives length of binary expansion. %Y A370641 A096111 gives product of binary indices. %Y A370641 A367902 counts choosable set-systems, ranks A367906, unlabeled A368095. %Y A370641 A367903 counts non-choosable set-systems, ranks A367907, unlabeled A368094. %Y A370641 Cf. A133686, A326031, A326702, A357812, A367905, A368100, A368109, A370586, A370638, A370642. %K A370641 nonn %O A370641 0,4 %A A370641 _Gus Wiseman_, Mar 11 2024 %E A370641 More terms from _Jinyuan Wang_, Mar 28 2025