This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A370642 #6 Mar 10 2024 21:23:30 %S A370642 0,0,0,1,1,3,9,26,26,40,82,175,338,636,1114 %N A370642 Number of minimal subsets of {1..n} such that it is not possible to choose a different binary index of each element. %C A370642 A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. %e A370642 The a(0) = 0 through a(6) = 9 subsets: %e A370642 . . . {1,2,3} {1,2,3} {1,2,3} {1,2,3} %e A370642 {1,4,5} {1,4,5} %e A370642 {2,3,4,5} {2,4,6} %e A370642 {1,2,5,6} %e A370642 {1,3,4,6} %e A370642 {1,3,5,6} %e A370642 {2,3,4,5} %e A370642 {2,3,5,6} %e A370642 {3,4,5,6} %t A370642 bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1]; %t A370642 fasmin[y_]:=Complement[y,Union@@Table[Union[s,#]& /@ Rest[Subsets[Complement[Union@@y,s]]],{s,y}]]; %t A370642 Table[Length[fasmin[Select[Subsets[Range[n]], Select[Tuples[bpe/@#],UnsameQ@@#&]=={}&]]],{n,0,10}] %Y A370642 For prime indices we have A370591, minima of A370583, complement A370582. %Y A370642 This is the minimal case of A370637, complement A370636. %Y A370642 The version for a unique choice is A370638, maxima A370640, diffs A370641. %Y A370642 The case without ones is A370644. %Y A370642 A048793 lists binary indices, A000120 length, A272020 reverse, A029931 sum. %Y A370642 A070939 gives length of binary expansion. %Y A370642 A096111 gives product of binary indices. %Y A370642 A326031 gives weight of the set-system with BII-number n. %Y A370642 A367902 counts choosable set-systems, ranks A367906, unlabeled A368095. %Y A370642 A367903 counts non-choosable set-systems, ranks A367907, unlabeled A368094. %Y A370642 A368100 ranks choosable multisets, complement A355529. %Y A370642 A370585 counts maximal choosable sets. %Y A370642 Cf. A072639, A140637, A367905, A368109, A370589, A370593, A370639. %K A370642 nonn,more %O A370642 0,6 %A A370642 _Gus Wiseman_, Mar 10 2024