This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A370643 #11 Mar 28 2025 14:12:52 %S A370643 0,0,0,0,0,1,7,23,46,113,287,680,1546,3374,7191,15008,30016,61013, %T A370643 124354,252577,511229,1031064,2074281,4164716,8350912,16729473, %U A370643 33494928,67034995,134127390,268325204,536737665,1073581062,2147162124,4294458549,8589210382,17178890873 %N A370643 Number of subsets of {2..n} such that it is not possible to choose a different binary index of each element. %C A370643 A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. %e A370643 The a(0) = 0 through a(7) = 23 subsets: %e A370643 . . . . . {2,3,4,5} {2,4,6} {2,4,6} %e A370643 {2,3,4,5} {2,3,4,5} %e A370643 {2,3,4,6} {2,3,4,6} %e A370643 {2,3,5,6} {2,3,4,7} %e A370643 {2,4,5,6} {2,3,5,6} %e A370643 {3,4,5,6} {2,3,5,7} %e A370643 {2,3,4,5,6} {2,3,6,7} %e A370643 {2,4,5,6} %e A370643 {2,4,5,7} %e A370643 {2,4,6,7} %e A370643 {2,5,6,7} %e A370643 {3,4,5,6} %e A370643 {3,4,5,7} %e A370643 {3,4,6,7} %e A370643 {3,5,6,7} %e A370643 {4,5,6,7} %e A370643 {2,3,4,5,6} %e A370643 {2,3,4,5,7} %e A370643 {2,3,4,6,7} %e A370643 {2,3,5,6,7} %e A370643 {2,4,5,6,7} %e A370643 {3,4,5,6,7} %e A370643 {2,3,4,5,6,7} %t A370643 bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1]; %t A370643 Table[Length[Select[Subsets[Range[2,n]], Select[Tuples[bpe/@#],UnsameQ@@#&]=={}&]],{n,0,10}] %Y A370643 The case with ones allowed is A370637, differences A370589. %Y A370643 The minimal case is A370644, with ones A370642. %Y A370643 A048793 lists binary indices, A000120 length, A272020 reverse, A029931 sum. %Y A370643 A058891 counts set-systems, A003465 covering, A323818 connected. %Y A370643 A070939 gives length of binary expansion. %Y A370643 A096111 gives product of binary indices. %Y A370643 Cf. A072639, A326031, A355740, A367905, A368109. %Y A370643 Cf. A133686, A140637, A355529, A367867, A370583, A370636, A370640. %K A370643 nonn %O A370643 0,7 %A A370643 _Gus Wiseman_, Mar 10 2024 %E A370643 More terms from _Jinyuan Wang_, Mar 28 2025