This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A370644 #6 Mar 11 2024 18:06:04 %S A370644 0,0,0,0,0,1,4,13,13,26,56,126,243,471,812,1438 %N A370644 Number of minimal subsets of {2..n} such that it is not possible to choose a different binary index of each element. %C A370644 A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. %e A370644 The a(0) = 0 through a(7) = 13 subsets: %e A370644 . . . . . {2,3,4,5} {2,4,6} {2,4,6} %e A370644 {2,3,4,5} {2,3,4,5} %e A370644 {2,3,5,6} {2,3,4,7} %e A370644 {3,4,5,6} {2,3,5,6} %e A370644 {2,3,5,7} %e A370644 {2,3,6,7} %e A370644 {2,4,5,7} %e A370644 {2,5,6,7} %e A370644 {3,4,5,6} %e A370644 {3,4,5,7} %e A370644 {3,4,6,7} %e A370644 {3,5,6,7} %e A370644 {4,5,6,7} %e A370644 The a(0) = 0 through a(7) = 13 set-systems: %e A370644 . . . . . {2}{12}{3}{13} {2}{3}{23} {2}{3}{23} %e A370644 {2}{12}{3}{13} {2}{12}{3}{13} %e A370644 {12}{3}{13}{23} {12}{3}{13}{23} %e A370644 {2}{12}{13}{23} {2}{12}{13}{23} %e A370644 {2}{12}{3}{123} %e A370644 {2}{3}{13}{123} %e A370644 {12}{3}{13}{123} %e A370644 {12}{3}{23}{123} %e A370644 {2}{12}{13}{123} %e A370644 {2}{12}{23}{123} %e A370644 {2}{13}{23}{123} %e A370644 {3}{13}{23}{123} %e A370644 {12}{13}{23}{123} %t A370644 bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1]; %t A370644 fasmin[y_]:=Complement[y,Union@@Table[Union[s,#]& /@ Rest[Subsets[Complement[Union@@y,s]]],{s,y}]]; %t A370644 Table[Length[fasmin[Select[Subsets[Range[2,n]], Select[Tuples[bpe/@#],UnsameQ@@#&]=={}&]]],{n,0,10}] %Y A370644 The version with ones allowed is A370642, minimal case of A370637. %Y A370644 This is the minimal case of A370643. %Y A370644 A048793 lists binary indices, A000120 length, A272020 reverse, A029931 sum. %Y A370644 A070939 gives length of binary expansion. %Y A370644 A096111 gives product of binary indices. %Y A370644 A367902 counts choosable set-systems, ranks A367906, unlabeled A368095. %Y A370644 A367903 counts non-choosable set-systems, ranks A367907, unlabeled A368094. %Y A370644 A370585 counts maximal choosable sets. %Y A370644 Cf. A072639, A140637, A326031, A355529, A367905, A368109, A370589, A370591, A370636, A370639, A370640. %K A370644 nonn,more %O A370644 0,7 %A A370644 _Gus Wiseman_, Mar 11 2024