A370645 Number of integer factorizations of n into unordered factors > 1 such that only one set can be obtained by choosing a different prime factor of each factor.
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 4, 1, 2, 1, 2, 1, 3, 1, 3, 1, 1, 1, 3, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 5, 1, 1, 2, 2, 1, 1, 1, 4, 1, 1, 1, 3, 1, 1, 1
Offset: 1
Keywords
Examples
The factorization f = (3*6*10) has prime factor choices (3,2,2), (3,3,2), (3,2,5), and (3,3,5), of which only (3,2,5) has all different parts, so f is counted under a(180). The a(n) factorizations for n = 2, 12, 24, 36, 72, 120, 144, 180, 288: (2) (2*6) (3*8) (4*9) (8*9) (3*5*8) (2*72) (4*5*9) (3*96) (3*4) (4*6) (6*6) (2*36) (4*5*6) (3*48) (5*6*6) (4*72) (2*12) (2*18) (3*24) (2*3*20) (4*36) (2*3*30) (6*48) (3*12) (4*18) (2*5*12) (6*24) (2*5*18) (8*36) (6*12) (2*6*10) (8*18) (2*6*15) (9*32) (3*4*10) (9*16) (2*9*10) (12*24) (12*12) (3*4*15) (16*18) (3*5*12) (2*144) (3*6*10)
Crossrefs
Programs
-
Mathematica
facs[n_]:=If[n<=1,{{}},Join @@ Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]], {d,Rest[Divisors[n]]}]]; Table[Length[Select[facs[n], Length[Union[Sort/@Select[Tuples[First /@ FactorInteger[#]&/@#], UnsameQ@@#&]]]==1&]],{n,100}]
Comments