This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A370647 #8 Mar 06 2024 14:47:42 %S A370647 1,3,5,7,11,15,17,19,23,31,33,35,39,41,51,53,55,59,65,67,69,77,83,85, %T A370647 87,91,93,95,97,103,109,111,119,123,127,129,131,155,157,161,165,169, %U A370647 177,179,183,185,187,191,201,203,205,209,211,213,217,227,235,237,241 %N A370647 Numbers such that only one set can be obtained by choosing a different prime factor of each prime index. %C A370647 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %e A370647 The prime indices of 91 are {4,6}, with only choice {2,3}, so 91 is in the sequence. %e A370647 The terms together with their prime indices begin: %e A370647 1: {} 53: {16} 109: {29} %e A370647 3: {2} 55: {3,5} 111: {2,12} %e A370647 5: {3} 59: {17} 119: {4,7} %e A370647 7: {4} 65: {3,6} 123: {2,13} %e A370647 11: {5} 67: {19} 127: {31} %e A370647 15: {2,3} 69: {2,9} 129: {2,14} %e A370647 17: {7} 77: {4,5} 131: {32} %e A370647 19: {8} 83: {23} 155: {3,11} %e A370647 23: {9} 85: {3,7} 157: {37} %e A370647 31: {11} 87: {2,10} 161: {4,9} %e A370647 33: {2,5} 91: {4,6} 165: {2,3,5} %e A370647 35: {3,4} 93: {2,11} 169: {6,6} %e A370647 39: {2,6} 95: {3,8} 177: {2,17} %e A370647 41: {13} 97: {25} 179: {41} %e A370647 51: {2,7} 103: {27} 183: {2,18} %t A370647 prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A370647 Select[Range[100],Length[Union[Sort /@ Select[Tuples[prix/@prix[#]],UnsameQ@@#&]]]==1&] %Y A370647 For nonexistence we have A355529, count A370593. %Y A370647 For binary instead of prime indices we have A367908, counted by A367904. %Y A370647 For existence we have A368100, count A370592. %Y A370647 For a sequence instead of set of factors we have A368101. %Y A370647 The version for subsets is A370584, see also A370582, A370583. %Y A370647 Maximal sets of this type are counted by A370585. %Y A370647 Partitions of this type are counted by A370594. %Y A370647 For subsets and binary indices we have A370638. %Y A370647 The version for factorizations is A370645, see also A368414, A368413. %Y A370647 For divisors instead of factors we have A370810, counted by A370595. %Y A370647 A006530 gives greatest prime factor, least A020639. %Y A370647 A027746 lists prime factors, A112798 indices, length A001222. %Y A370647 A355741 counts ways to choose a prime factor of each prime index. %Y A370647 Cf. A000040, A000720, A003963, A355739, A355740, A355744, A355745, A368110. %K A370647 nonn %O A370647 1,2 %A A370647 _Gus Wiseman_, Mar 06 2024