This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A370667 #37 Mar 29 2024 22:14:59 %S A370667 9876543210,9876124053,9863527104,9846032571,9847103256,9247560381 %N A370667 Largest pandigital number whose n-th power contains each digit (0-9) exactly n times. %C A370667 If an n-th power of a pandigital number k contains each digit (0-9) exactly n times, it implies that 10^(10 - 1/n) <= 9876543210, so n <= 185. It's easy to verify that no solutions exist for n=7 to 185. %e A370667 a(4) = 9846032571 because it is the largest 10-digit number that contains each digit (0-9) exactly once and its 4th power 9398208429603554221689707364750715341681 contains each digit (0-9) exactly 4 times. %t A370667 s=FromDigits/@Permutations[Range[0,9]];For[n=1,n<=6,n++,For[k=Length@s,k>0,k--,If[Count[Tally[IntegerDigits[s[[k]]^n]][[All,2]],n]==10,Print[{n,s[[k]]}];Break[]]]] %o A370667 (Python) %o A370667 from itertools import permutations %o A370667 a=[] %o A370667 for n in range(1,7): %o A370667 for k in [int(''.join(d)) for d in permutations('9876543210', 10)]: %o A370667 if all(str(k**n).count(d) ==n for d in '0123456789'): %o A370667 a.append(k) %o A370667 break %o A370667 print(a) %Y A370667 Cf. A050278, A199630, A199631, A199632, A199633, A078255, A154532, A154566, A357755, A365144. %K A370667 base,easy,fini,full,nonn %O A370667 1,1 %A A370667 _Zhining Yang_, Mar 13 2024