This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A370685 #10 Feb 27 2024 09:43:41 %S A370685 2045,2705,2855,14614,18838,28437,31299,43603,68807,76841,77386,88041, %T A370685 108415,116822,194605,213679,218729,252094,255202,269653,290449, %U A370685 294683,302761,305362,310799,339382,348242,361055,398111,445066,445174,459761,464567,489809,496081,501386,515981,534777,544405 %N A370685 Semiprimes that are also the sums of two, three and four successive semiprimes. %H A370685 Robert Israel, <a href="/A370685/b370685.txt">Table of n, a(n) for n = 1..2734</a> %e A370685 a(3) = 2855 is a term because 2855 = 5 * 571 is a semiprime, A001358(423) = 1418 = 2*709 and A001358(424) = 1437 = 3 * 479 are two successive semiprimes whose sum is 2855, A001358(285) = 949 = 13 * 73, A001358(286) = 951 = 3 * 317 and A001358(287) = 955 = 5 * 191 are three successive semiprimes whose sum is 2855, and A001358(216) = 707 = 7 * 101, A001358(217) = 713 = 23 * 31, A001358(218) = 717 = 3 * 239, A001358(219) = 718 = 2 * 359 are four successive semiprimes whose sum is 2855. %p A370685 N:= 10^6: # for terms <= N %p A370685 P:= select(isprime, [2, seq(i, i=3..N/2, 2)]): %p A370685 nP:= nops(P): %p A370685 SP:= 0: %p A370685 for i from 1 while P[i]^2 <= N do %p A370685 m:= ListTools:-BinaryPlace(P, N/P[i]); %p A370685 SP:= SP, op(P[i]*P[i..m]); %p A370685 od: %p A370685 SP:= sort([SP]): %p A370685 SS:= ListTools:-PartialSums(SP): %p A370685 SS2:= {seq(SS[i]-SS[i-2], i=3..nops(SS))}: %p A370685 SS3:= {seq(SS[i]-SS[i-3], i=4..nops(SS))}: %p A370685 SS4:= {seq(SS[i]-SS[i-4], i=5..nops(SS))}: %p A370685 A:=SS2 intersect SS3 intersect SS4 intersect convert(SP, set): %p A370685 A:= sort(convert(A, list)): %Y A370685 Cf. A001358, A370162. Intersection of A092192, A131610 and A158339. %K A370685 nonn %O A370685 1,1 %A A370685 _Robert Israel_, Feb 26 2024