cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A370685 Semiprimes that are also the sums of two, three and four successive semiprimes.

This page as a plain text file.
%I A370685 #10 Feb 27 2024 09:43:41
%S A370685 2045,2705,2855,14614,18838,28437,31299,43603,68807,76841,77386,88041,
%T A370685 108415,116822,194605,213679,218729,252094,255202,269653,290449,
%U A370685 294683,302761,305362,310799,339382,348242,361055,398111,445066,445174,459761,464567,489809,496081,501386,515981,534777,544405
%N A370685 Semiprimes that are also the sums of two, three and four successive semiprimes.
%H A370685 Robert Israel, <a href="/A370685/b370685.txt">Table of n, a(n) for n = 1..2734</a>
%e A370685 a(3) = 2855 is a term because 2855 = 5 * 571 is a semiprime, A001358(423) = 1418 = 2*709 and A001358(424) = 1437 = 3 * 479 are two successive semiprimes whose sum is 2855, A001358(285) = 949 = 13 * 73, A001358(286) = 951 = 3 * 317 and A001358(287) = 955 = 5 * 191 are three successive semiprimes whose sum is 2855, and A001358(216) = 707 = 7 * 101, A001358(217) = 713 = 23 * 31, A001358(218) = 717 = 3 * 239, A001358(219) = 718 = 2 * 359 are four successive semiprimes whose sum is 2855.
%p A370685 N:= 10^6: # for terms <= N
%p A370685 P:= select(isprime, [2, seq(i, i=3..N/2, 2)]):
%p A370685 nP:= nops(P):
%p A370685 SP:= 0:
%p A370685 for i from 1 while P[i]^2 <= N do
%p A370685   m:= ListTools:-BinaryPlace(P, N/P[i]);
%p A370685   SP:= SP, op(P[i]*P[i..m]);
%p A370685 od:
%p A370685 SP:= sort([SP]):
%p A370685 SS:= ListTools:-PartialSums(SP):
%p A370685 SS2:= {seq(SS[i]-SS[i-2], i=3..nops(SS))}:
%p A370685 SS3:= {seq(SS[i]-SS[i-3], i=4..nops(SS))}:
%p A370685 SS4:= {seq(SS[i]-SS[i-4], i=5..nops(SS))}:
%p A370685 A:=SS2 intersect SS3 intersect SS4 intersect convert(SP, set):
%p A370685 A:= sort(convert(A, list)):
%Y A370685 Cf. A001358, A370162. Intersection of A092192, A131610 and A158339.
%K A370685 nonn
%O A370685 1,1
%A A370685 _Robert Israel_, Feb 26 2024