This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A370687 #7 Feb 27 2024 19:36:32 %S A370687 4,10,134,2045,2705,16626281 %N A370687 a(n) is the first number that is the sum of k successive semiprimes for 1 <= k <= n. %C A370687 a(7) > 5 * 10^8 if it exists. %e A370687 a(3) = 134 because 134 = 2 * 67 is a semiprime, the sum of two successive semiprimes 65 = 5 * 13 and 69 = 3 * 23, and the sum of three successive semiprimes 39 = 3 * 13, 46 = 2 * 23, 49 = 7 * 7, and is the least such number. %p A370687 N:= 2*10^7: # for terms <= N %p A370687 P:= select(isprime, [2, seq(i, i=3..N/2, 2)]): %p A370687 nP:= nops(P): %p A370687 SP:= 0: %p A370687 for i from 1 while P[i]^2 <= N do %p A370687 m:= ListTools:-BinaryPlace(P, N/P[i]); %p A370687 SP:= SP, op(P[i]*P[i..m]); %p A370687 od: %p A370687 SP:= sort([SP]): %p A370687 SS:= ListTools:-PartialSums(SP): %p A370687 V:= Vector(6): %p A370687 SI:= Vector(6): %p A370687 II:= Vector(6,1): %p A370687 for i from 1 to 6 do SI[i]:= SS[i+1]-SS[1] od: %p A370687 count:= 1: V[1]:= 4: m:= 4: im:= {1}: %p A370687 while count < 6 do %p A370687 for j in im do %p A370687 II[j]:= II[j]+1; %p A370687 SI[j]:= SS[II[j]+j] - SS[II[j]]; %p A370687 od; %p A370687 m:= min(SI); %p A370687 im:= select(j -> SI[j] = m, {$1..20}); %p A370687 for k from 1 to 20 while {$1..k} subset im do %p A370687 if V[k] = 0 then V[k]:= m; count:= count+1 fi %p A370687 od; %p A370687 od: %p A370687 convert(V,list); %Y A370687 Cf. A001358, A092192, A370162, A370685. %K A370687 nonn,more %O A370687 1,1 %A A370687 _Robert Israel_, Feb 27 2024