This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A370703 #7 Jun 17 2024 15:17:34 %S A370703 1,1,1,1,1,1,1,4,1,1,1,1,1,1,1,1,16,1,2,1,1,1,1,1,1,1,1,1,1,64,1,16,1, %T A370703 4,1,1,1,1,1,1,1,1,1,1,1,1,256,1,16,1,8,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, %U A370703 1,1024,1,256,1,32,1,8,1,4,1,1 %N A370703 Triangle read by rows: T(n, k) = denominator([x^k] n! [t^n] (t/2 + sqrt(1 + (t/2)^2))^(2*x)). %e A370703 Triangle starts: %e A370703 [0] 1; %e A370703 [1] 1, 1; %e A370703 [2] 1, 1, 1; %e A370703 [3] 1, 4, 1, 1; %e A370703 [4] 1, 1, 1, 1, 1; %e A370703 [5] 1, 16, 1, 2, 1, 1; %e A370703 [6] 1, 1, 1, 1, 1, 1, 1; %e A370703 [7] 1, 64, 1, 16, 1, 4, 1, 1; %e A370703 [8] 1, 1, 1, 1, 1, 1, 1, 1, 1; %e A370703 [9] 1, 256, 1, 16, 1, 8, 1, 1, 1, 1; %p A370703 gf := (t/2 + sqrt(1 + (t/2)^2))^(2*x): ser := series(gf, t, 20): %p A370703 ct := n -> n!*coeff(ser, t, n): T := (n, k) -> denom(coeff(ct(n),x,k)): %p A370703 seq(seq(T(n, k), k = 0..n), n = 0..11); %Y A370703 Cf. A370705 (numerators). %K A370703 nonn,tabl,frac %O A370703 0,8 %A A370703 _Peter Luschny_, Mar 02 2024