cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A370705 Triangle read by rows: T(n, k) = numerator(CF(n, k)) where CF(n, k) = n! * [x^k] [t^n] (t/2 + sqrt(1 + (t/2)^2))^(2*x).

Original entry on oeis.org

1, 0, 1, 0, 0, 1, 0, -1, 0, 1, 0, 0, -1, 0, 1, 0, 9, 0, -5, 0, 1, 0, 0, 4, 0, -5, 0, 1, 0, -225, 0, 259, 0, -35, 0, 1, 0, 0, -36, 0, 49, 0, -14, 0, 1, 0, 11025, 0, -3229, 0, 987, 0, -21, 0, 1, 0, 0, 576, 0, -820, 0, 273, 0, -30, 0, 1
Offset: 0

Views

Author

Peter Luschny, Mar 02 2024

Keywords

Comments

The rational triangle R(n, k) contains the central factorial numbers. The central factorial of the first kind is the even subtriangle of R, while the central factorial of the second kind is the odd subtriangle. Since the terms of the even subtriangle can be seen as integers, the rational nature of these numbers is generally disregarded. The denominators of the central factorial of second kind are powers of 4; therefore, they are often studied as integers in the form 4^(n-k)*R(n, k). We will refer to the subtriangles by CF1(n, k) and CF2(n, k).
We recall that if T(n, k) is a number triangle (0 <= k <= n) then
Teven(n, k) = [T(n, k), k=0..n step 2), n=0..len step 2]
is the even subtriangle of T, and the odd subtriangle of T is
Todd(n, k) = [T(n, k), k=1..n step 2), n=1..len step 2], where
'k=a..o step s' denotes the subrange [a, a+s, a+2*s, ..., a+s*floor((o-a)/s)].
The central factorial numbers have their origins in approximation theory and numerical mathematics. They were undoubtedly used for a long time when J. F. Steffensen used them to construct quadrature formulas and presented them in 1924 at the 7th ICM. Four decades later, Carlitz and Riordan adopted the idea for use in combinatorics. While Steffensen originally referred to the numbers as "central differences of nothing," the second part of the name was later omitted.

Examples

			Triangle starts:
[0] 1;
[1] 0,     1;
[2] 0,     0,   1;
[3] 0,    -1,   0,     1;
[4] 0,     0,  -1,     0,  1;
[5] 0,     9,   0,    -5,  0,   1;
[6] 0,     0,   4,     0, -5,   0,   1;
[7] 0,  -225,   0,   259,  0, -35,   0,   1;
[8] 0,     0, -36,     0, 49,   0, -14,   0, 1;
[9] 0, 11025,   0, -3229,  0, 987,   0, -21, 0, 1;
		

References

  • Johan Frederik Steffensen, On a class of quadrature formulae. Proceedings of the International Mathematical Congress Toronto 1924, Vol 2, pp. 837-844.

Crossrefs

See the discussion by Sloane in A008955 of Riordan's notation. In particular, the notation 'T' below does not refer to the present triangle.
Central factorials (rational, general case): (this triangle) / A370703;
t(2n, 2k) (first kind, 'even case') A204579; (signed, T(n, 0) missing)
|t(2n, 2k)| A269944; (unsigned, T(n, 0) = 0^n)
|t(2n, 2n-2k)| A008955;
|t(2n+1, 2n+1-2k)|*4^k A008956;
T(2n, 2k) (second kind, 'odd case') A269945, A036969;
T(2n+1, 2k+1)*4^(n-k) A160562.

Programs

  • Maple
    gf := (t/2 + sqrt(1 + (t/2)^2))^(2*x): ser := series(gf, t, 20):
    ct := n -> n!*coeff(ser, t, n):
    T := (n, k) -> numer(coeff(ct(n), x, k)):
    seq(seq(T(n, k), k = 0..n), n = 0..10);
    # Filtering the central factorials of the first resp. second kind:
    CF1 := (T,len) -> local n,k; seq(print(seq(T(n,k), k=0..n, 2)), n = 0..len, 2);
    CF2 := (T,len) -> local n,k; seq(print(seq(T(n,k), k=1..n, 2)), n = 1..len, 2);
Showing 1-1 of 1 results.