A370705 Triangle read by rows: T(n, k) = numerator(CF(n, k)) where CF(n, k) = n! * [x^k] [t^n] (t/2 + sqrt(1 + (t/2)^2))^(2*x).
1, 0, 1, 0, 0, 1, 0, -1, 0, 1, 0, 0, -1, 0, 1, 0, 9, 0, -5, 0, 1, 0, 0, 4, 0, -5, 0, 1, 0, -225, 0, 259, 0, -35, 0, 1, 0, 0, -36, 0, 49, 0, -14, 0, 1, 0, 11025, 0, -3229, 0, 987, 0, -21, 0, 1, 0, 0, 576, 0, -820, 0, 273, 0, -30, 0, 1
Offset: 0
Examples
Triangle starts: [0] 1; [1] 0, 1; [2] 0, 0, 1; [3] 0, -1, 0, 1; [4] 0, 0, -1, 0, 1; [5] 0, 9, 0, -5, 0, 1; [6] 0, 0, 4, 0, -5, 0, 1; [7] 0, -225, 0, 259, 0, -35, 0, 1; [8] 0, 0, -36, 0, 49, 0, -14, 0, 1; [9] 0, 11025, 0, -3229, 0, 987, 0, -21, 0, 1;
References
- Johan Frederik Steffensen, On a class of quadrature formulae. Proceedings of the International Mathematical Congress Toronto 1924, Vol 2, pp. 837-844.
Links
- P. L. Butzer, M. Schmidt, E. L. Stark and L. Vogt. Central factorial numbers; their main properties and some applications, Num. Funct. Anal. Optim., 10 (1989) 419-488.
- Leonard Carlitz and John Riordan, The Divided Central Differences of Zero, Canadian Journal of Mathematics, Volume 15, 1963, pp. 94-100.
- P. A. MacMahon, Divisors of numbers and their continuations in the theory of partitions, Proc. London Math. Soc., (2) 19 (1919), 75-113; Coll. Papers II, pp. 303-341.
- Johan Frederik Steffensen, On the Definition of the Central Factorial, Journal of the Institute of Actuaries, Volume 64, Issue 2, July 1933, pp. 165-168.
Crossrefs
See the discussion by Sloane in A008955 of Riordan's notation. In particular, the notation 'T' below does not refer to the present triangle.
Central factorials (rational, general case): (this triangle) / A370703;
t(2n, 2k) (first kind, 'even case') A204579; (signed, T(n, 0) missing)
|t(2n, 2k)| A269944; (unsigned, T(n, 0) = 0^n)
|t(2n, 2n-2k)| A008955;
|t(2n+1, 2n+1-2k)|*4^k A008956;
T(2n+1, 2k+1)*4^(n-k) A160562.
Programs
-
Maple
gf := (t/2 + sqrt(1 + (t/2)^2))^(2*x): ser := series(gf, t, 20): ct := n -> n!*coeff(ser, t, n): T := (n, k) -> numer(coeff(ct(n), x, k)): seq(seq(T(n, k), k = 0..n), n = 0..10); # Filtering the central factorials of the first resp. second kind: CF1 := (T,len) -> local n,k; seq(print(seq(T(n,k), k=0..n, 2)), n = 0..len, 2); CF2 := (T,len) -> local n,k; seq(print(seq(T(n,k), k=1..n, 2)), n = 1..len, 2);
Comments