This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A370706 #10 Mar 07 2024 12:32:05 %S A370706 1,1,1,1,4,6,1,9,36,60,1,16,120,480,840,1,25,300,2100,8400,15120,1,36, %T A370706 630,6720,45360,181440,332640,1,49,1176,17640,176400,1164240,4656960, %U A370706 8648640,1,64,2016,40320,554400,5322240,34594560,138378240,259459200 %N A370706 Triangle read by rows: T(n, k) = binomial(n, k) * Pochhammer(n, k). %F A370706 T(n, k) = A370707(n, k) / k!. %F A370706 T(n, n) = Pochhammer(n, n) for n >= 0 (which is different from A000407(n)). %e A370706 Triangle starts: %e A370706 [0] 1; %e A370706 [1] 1, 1; %e A370706 [2] 1, 4, 6; %e A370706 [3] 1, 9, 36, 60; %e A370706 [4] 1, 16, 120, 480, 840; %e A370706 [5] 1, 25, 300, 2100, 8400, 15120; %e A370706 [6] 1, 36, 630, 6720, 45360, 181440, 332640; %e A370706 [7] 1, 49, 1176, 17640, 176400, 1164240, 4656960, 8648640; %p A370706 T := (n, k) -> binomial(n, k)*pochhammer(n, k): %p A370706 seq(seq(T(n, k), k = 0..n), n = 0..8); %t A370706 T[n_, k_] := Binomial[n, k] Pochhammer[n, k]; %t A370706 Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten %Y A370706 Cf. A370707, A000407 (main diagonal), A278070 (row sums). %K A370706 nonn,tabl %O A370706 0,5 %A A370706 _Peter Luschny_, Feb 28 2024