cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A370710 a(n) = 3^n * [x^n] Product_{k>=1} 1/(1 - 3*x^k)^(1/3).

This page as a plain text file.
%I A370710 #8 Feb 28 2024 18:01:14
%S A370710 1,3,27,180,1431,10206,83025,641277,5264109,42896790,357649587,
%T A370710 2989185039,25284805857,214547921451,1832454271926,15702526829196,
%U A370710 135091225972926,1165383100947105,10081310266960155,87401262194470719,759320707197024909,6608561546767471227,57610976508944343963
%N A370710 a(n) = 3^n * [x^n] Product_{k>=1} 1/(1 - 3*x^k)^(1/3).
%F A370710 G.f.: Product_{k>=1} 1/(1 - 3*(3*x)^k)^(1/3).
%F A370710 a(n) ~ c * 9^n / n^(2/3), where c = 1 / (Gamma(1/3) * QPochhammer(1/3)^(1/3)) = 0.45283708537555770181385241925945547307046394744...
%t A370710 nmax = 25; CoefficientList[Series[Product[1/(1-3*x^k), {k, 1, nmax}]^(1/3), {x, 0, nmax}], x] * 3^Range[0, nmax]
%t A370710 nmax = 25; CoefficientList[Series[Product[1/(1-3*(3*x)^k), {k, 1, nmax}]^(1/3), {x, 0, nmax}], x]
%t A370710 nmax = 25; CoefficientList[Series[(-2/QPochhammer[3,x])^(1/3), {x, 0, nmax}], x] * 3^Range[0, nmax]
%Y A370710 Cf. A242587, A370712.
%K A370710 nonn
%O A370710 0,2
%A A370710 _Vaclav Kotesovec_, Feb 27 2024