This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A370712 #8 Feb 28 2024 18:08:07 %S A370712 1,3,0,99,-270,2430,-10287,105462,-750141,5702481,-42623901,347424633, %T A370712 -2779077762,22353287634,-181730796723,1493711042589,-12321529794261, %U A370712 102125312638713,-850797139405887,7120067746384863,-59800770201017934,503922807927384129,-4259721779079782751 %N A370712 a(n) = 3^n * [x^n] Product_{k>=1} (1 + 3*x^k)^(1/3). %F A370712 G.f.: Product_{k>=1} (1 + 3*(3*x)^k)^(1/3). %F A370712 a(n) ~ (-1)^(n+1) * c * 9^n / n^(4/3), where c = QPochhammer(-1/3)^(1/3) / (3*Gamma(2/3)) = 0.26286302373105271371291957730496322329245126572... %t A370712 nmax = 30; CoefficientList[Series[Product[(1 + 3*x^k), {k, 1, nmax}]^(1/3), {x, 0, nmax}], x] * 3^Range[0, nmax] %t A370712 nmax = 30; CoefficientList[Series[Product[(1 + 3*(3*x)^k), {k, 1, nmax}]^(1/3), {x, 0, nmax}], x] %t A370712 nmax = 30; CoefficientList[Series[(QPochhammer[-3, x]/4)^(1/3), {x, 0, nmax}], x] * 3^Range[0, nmax] %Y A370712 Cf. A032308, A370710. %Y A370712 Cf. A300579, A344062. %K A370712 sign %O A370712 0,2 %A A370712 _Vaclav Kotesovec_, Feb 27 2024