This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A370713 #7 Feb 28 2024 17:56:15 %S A370713 1,2,10,36,150,524,2116,7528,29158,107404,409388,1526712,5843580, %T A370713 22048056,84476488,322465104,1240657798,4769404556,18436257820, %U A370713 71280387736,276583603220,1074167182184,4181581140280,16295088132272,63609310195164,248542739388472,972391744910392 %N A370713 a(n) = 2^n * [x^n] Product_{k>=1} 1/(1 - 2*x^k)^(1/2). %F A370713 G.f.: Product_{k>=1} 1/(1 - 2*(2*x)^k)^(1/2). %F A370713 a(n) ~ 4^n / sqrt(Pi*QPochhammer(1/2)*n). %t A370713 nmax = 35; CoefficientList[Series[Product[1/(1-2*x^k), {k, 1, nmax}]^(1/2), {x, 0, nmax}], x] * 2^Range[0, nmax] %t A370713 nmax = 35; CoefficientList[Series[Product[1/(1-2*(2*x)^k), {k, 1, nmax}]^(1/2), {x, 0, nmax}], x] %t A370713 nmax = 35; CoefficientList[Series[Sqrt[-1/QPochhammer[2,x]], {x, 0, nmax}], x] * 2^Range[0, nmax] %Y A370713 Cf. A070933, A370709. %K A370713 nonn %O A370713 0,2 %A A370713 _Vaclav Kotesovec_, Feb 27 2024