This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A370716 #8 Feb 28 2024 18:04:49 %S A370716 1,6,18,1170,-1890,133326,101250,20498994,-164656314,3778220862, %T A370716 -28085954094,771567716970,-10691904063114,183594050113518, %U A370716 -2711145260068326,49416883617381354,-789899109743435994,13176840267952166070,-216403389726994588086,3681309971143060236810 %N A370716 a(n) = 3^(2*n) * [x^n] Product_{k>=1} (1 + 2*x^k)^(1/3). %F A370716 G.f.: Product_{k>=1} (1 + 2*(9*x)^k)^(1/3). %F A370716 a(n) ~ (-1)^(n+1) * c * 18^n / n^(4/3), where c = QPochhammer(-1/2)^(1/3) / (3*Gamma(2/3)) = 0.2623638446186535909018671540030519... %t A370716 nmax = 20; CoefficientList[Series[Product[(1 + 2*x^k), {k, 1, nmax}]^(1/3), {x, 0, nmax}], x] * 3^(2*Range[0, nmax]) %t A370716 nmax = 20; CoefficientList[Series[Product[(1 + 2*(9*x)^k), {k, 1, nmax}]^(1/3), {x, 0, nmax}], x] %t A370716 nmax = 20; CoefficientList[Series[(QPochhammer[-2, x]/3)^(1/3), {x, 0, nmax}], x] * 3^(2*Range[0, nmax]) %Y A370716 Cf. A032302, A370715. %Y A370716 Cf. A075900, A300581, A304961, A327550. %K A370716 sign %O A370716 0,2 %A A370716 _Vaclav Kotesovec_, Feb 27 2024