cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A370732 a(n) = 4^n * [x^n] Product_{k>=1} 1/(1 - 2*x^k)^(1/4).

This page as a plain text file.
%I A370732 #7 Feb 29 2024 06:24:01
%S A370732 1,2,18,108,822,4796,37492,231704,1738150,11857004,87262684,617409128,
%T A370732 4638712124,33724007896,253800160808,1894353653552,14350905612038,
%U A370732 108412437326412,827441075006796,6308125533133896,48388714839180756,371391625244862600,2860885559165073624
%N A370732 a(n) = 4^n * [x^n] Product_{k>=1} 1/(1 - 2*x^k)^(1/4).
%F A370732 G.f.: Product_{k>=1} 1/(1 - 2*(4*x)^k)^(1/4).
%F A370732 a(n) ~ 8^n / (Gamma(1/4) * QPochhammer(1/2)^(1/4) * n^(3/4)).
%t A370732 nmax = 30; CoefficientList[Series[Product[1/(1-2*x^k), {k, 1, nmax}]^(1/4), {x, 0, nmax}], x] * 4^Range[0, nmax]
%t A370732 nmax = 30; CoefficientList[Series[Product[1/(1-2*(4*x)^k), {k, 1, nmax}]^(1/4), {x, 0, nmax}], x]
%Y A370732 Cf. A070933 (m=1), A370713 (m=2), A370715 (m=3), A370733 (m=5).
%K A370732 nonn
%O A370732 0,2
%A A370732 _Vaclav Kotesovec_, Feb 28 2024